g-2 experiments (and other muon experiments)

Joseph Price, University of Liverpool UK HEP forum, Cosener's house September 24th, 2019

Outline

- What is g-2 and why is it interesting to measure? - How is it calculated?
- Fermilab and J-PARC muon g-2 experiments
 - How is it measured?
 - Prospects and timeline
- Precision muon measurements beyond g-2
 - Where/How is it measured?
 - Prospects and timeline
- Conclusions

Magnetic Moment

spin via the gyromagnetic ratio g:

Magnetic moment (spin) interacts with external B-fields

• Makes spin precess at frequency determined by g

Joe Price | g-2 experiments 24/09/19

Each charged lepton has an intrinsic magnetic moment that is coupled to its

Magnetic Moment & Virtual Loops

• For a pure Dirac spin-1/2 charged fermion, g is exactly 2

Joe Price | g-2 experiments 24/09/19

Interactions between the fermion and virtual loops change the value of g - X &

Schwinger Correction

 The most simple correction is 1st order QED, calculated by Schwinger in 1948:

- Resolved the discrepancy in g_e as measured by Kusch-Foley in 1947
- This correction is the same for all generations of charged leptons

Joe Price | g-2 experiments 24/09/19

$$2(1+\frac{\alpha}{2\pi}) \approx 2.00232$$

Higher order terms

 There are higher order QED, QCD and EW corrections that need to be included

- the scale of the physics
- Let's look at the calculation for the muon...

• The size of the higher order corrections depends on mass of the lepton, and

24/09/19 Joe Price I g-2 experiments

24/09/19 Joe Price I g-2 experiments

Joe Price | g-2 experiments 24/09/19

Joe Price | g-2 experiments 24/09/19

Hadronic μ m Qv H еH нн μ

Joe Price | g-2 experiments 24/09/19

Joe Price | g-2 experiments 24/09/19

Standard Model Uncertainties

aSM

$$a_{\mu} = \frac{g_{\mu} - 2}{2}$$

- The SM value of a_{μ} is dominated by QED
- But its uncertainty is dominated by Hadronic contributions

Joe Price | g-2 experiments 24/09/19

Split into Hadronic Vacuum Polarisation (HVP) & Hadronic Light by Light (HLbL)

Contribution	Value (x 10 ⁻¹¹)	Reference
QED	116 584 718.95 ± 0.08	PRL 109 111808 (2012)
EW	153.6 ± 1.0	PRD 88 053005 (2013)

Contribution	Value (x 10 ⁻¹¹)	Ref
QED	116 584 718.95 ± 0.08	PRL 109
EW	153.6 ± 1.0	PRD 88 C
HVP (LO)	6931 ± 34	EPJ C 7
HVP (LO)	6933 ± 25	PRD 97 1

HVP (LO): Lowest-Order Hadronic Vacuum Polarization

- **Critical input** from e⁺e⁻ colliders (data from SND, CMD3, BaBar, KLOE, Belle, BESIII), $\delta a_{\mu}^{HVP} \sim 0.5\%$; extensive physics program in place to reduce δa_{μ}^{HVP} to ~ 0.3% in coming years
- Progress on the lattice: Calculations at physical π mass; goal: $\delta a_{\mu}^{\mu\nu\rho} \sim 1-2\%$ in a few years (cross-check with e+e- data)

Contribution	Value (x 10 ⁻¹¹)	Reference
QED	116 584 718.95 ± 0.08	PRL 109 111808 (2012)
EW	153.6 ± 1.0	PRD 88 053005 (2013)
HVP (LO)	6931 ± 34	EPJ C 77 827 (2017)
HVP (LO)	6933 ± 25	PRD 97 114025 (2018)
HVP (NLO)	-98.7 ± 0.7	EPJ C 77 827 (2017)
HVP (NLO)	-98.2 ± 0.4	PRD 97 114025 (2018)
HVP (NNLO)	12.4 ± 0.1	PLB 734 144 (2014)

HVP (LO): Lowest-Order Hadronic Vacuum Polarization

- **Critical input** from e⁺e⁻ colliders (data from SND, CMD3, BaBar, KLOE, Belle, BESIII), $\delta a_{\mu}^{HVP} \sim 0.5\%$; extensive physics program in place to reduce δa_{μ}^{HVP} to ~ 0.3% in coming years
- Progress on the lattice: Calculations at physical π mass; goal: $\delta a_{\mu}^{\mu\nu\rho} \sim 1-2\%$ in a few years (cross-check with e+e- data)

New *ab initio* approaches [PRD **98** 094503 (2018)] finding consistent result of $(-93 \pm 13) \times 10^{-11}$ **lattice making big strides**

6933 ± 25	PRD 97 1
-98.7 ± 0.7	EPJ C 7
-98.2 ± 0.4	PRD 97 1
12.4 ± 0.1	PLB 734
	6933 ± 25 -98.7 \pm 0.7 -98.2 \pm 0.4 12.4 \pm 0.1

HVP (LO): Lowest-Order Hadronic Vacuum Polarization

- **Critical input** from e^+e^- colliders (data from SND, CMD3, BaBar, KLOE, Belle, BESIII), $\delta a_{\mu}^{HVP} \sim 0.5\%$; extensive physics program in place to reduce δa_{μ}^{HVP} to ~ 0.3% in coming years
- Progress on the lattice: Calculations at physical π mass; goal: $\delta a_{\mu}^{HVP} \sim 1-2\%$ in a few years (cross-check with e+e- data)

New *ab initio* approaches [PRD **98** 094503 (2018)] finding consistent result of $(-93 \pm 13) \times 10^{-11}$ **lattice making big strides**

r. J)	6933 ± 25	PRD 97 1
HVP (NLO)	-98.7 ± 0.7	EPJ C 7
HVP (NLO)	-98.2 ± 0.4	PRD 97 1
HVP (NNLO)	12.4 ± 0.1	PLB 734
HLbL (LO + NLO)	101 ± 26	PLB 73 EPJ Web Cor
Total SM	116 591 818 ± 43 (368 ppb)	
	116 591 821 ± 36 (309 ppb)	

HVP (LO): Lowest-Order Hadronic Vacuum Polarization

- **Critical input** from e^+e^- colliders (data from SND, CMD3, BaBar, KLOE, Belle, BESIII), $\delta a_{\mu}^{HVP} \sim 0.5\%$; extensive physics program in place to reduce δa_{μ}^{HVP} to ~ 0.3% in coming years
- Progress on the lattice: Calculations at physical π mass; goal: $\delta a_{\mu}^{HVP} \sim 1-2\%$ in a few years (cross-check with e+e- data)

HLbL: Hadronic Light-by-Light

- Difficult to relate to data like HVP (LO); γ^* physics, π^0 data (BESIII, KLOE) important for constraining models
- Theory Progress: New dispersive calculation approach; extend the lattice (finite volume, disconnected diagrams); Blum et al. making excellent progress

$$a_{\mu}^{\text{had};\text{LO}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^{2} \int_{m_{\pi}^{2}}^{\infty} \frac{ds}{s^{2}} K(s) R(s)$$

$$R \equiv \frac{\sigma_{\text{tot}}(e^{+}e^{-} \rightarrow \text{had})}{\sigma(e^{+}e^{-} \rightarrow \mu^{+})}$$

$$R \equiv \frac{\sigma_{\text{tot}}(e^{+}e^{-} \rightarrow \mu^{+})}{\sigma(e^{+}e^{-} \rightarrow \mu^{+})}$$

$$R \equiv \frac{\sigma_{\text{tot}}(e^{+}e^{-} \rightarrow \mu^{+})}{\sigma(e^{+}e^{-} \rightarrow \mu^{+})}$$

Se Fermi

New *ab initio* approaches [PRD **98** 094503 (2018)] finding consistent result of $(-93 \pm 13) \times 10^{-11}$ **lattice making big strides**

ь. J)	6933 ± 25	PRD 97 1	
HVP (NLO)	-98.7 ± 0.7	EPJ C 7	
HVP (NLO)	-98.2 ± 0.4	PRD 97 1	
HVP (NNLO)	12.4 ± 0.1	PLB 734	
	101 ± 26	PLB 73 EPJ Web Cor	
 Builds confidence in HLbL term 91 818 ± 43 (2018)] for a^{π⁰-} (2018)] for a^π			
• Progress on the lattice: Calculations at physical π mass; go			

pole is consistent with earlier vector-,

dominance calcs [PRD **65** 073034 **4** 053006 (2016), EJC **75** 586 (2015)]

e-

4 mon

 $\mathbb{R}(s) \\\equiv \frac{\sigma_{\text{tot}}(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$

64

oal:

S

Lepton Magnetic Moment - Measurement Status

Charged lepton	a _l	Reference	Experiment/author
e [a(Rb)]	[115965218073 ± 28] × 10 ⁻¹⁴	PRL 100 120801 (2008)	Gabrielse et. al
e [ɑ(Cs)]	[115965218161 ± 23] × 10 ⁻¹⁴	Science 360 191 (2018)	Parker et. al
µ+	[116592020 ± 130] × 10 ⁻¹¹	PRL 86 2227 (2001)	BNL
μ	116592140 ± 70] × 10 ⁻¹¹	PRL 92 161802 (2004)	BNL
μ (combined)	116592080 ± 54] × 10 ⁻¹¹	PRD 73 072003 (2006)	BNL
τ	-0.052 < a _τ < 0.013 (95%)	Eur. Phys. J C35 (2004)	DELPHI

- Muon limit gives tantalising discrepancy of $a_{\mu} \sim 3.5\sigma$ from SM
- Potential new a_T at LHC using heavy ions? arxiv: 1908.05180

• Electron limit improved by new α_{EM} , gives $a_e \sim -2.5\sigma$ from SM expectation

BSM contributions?

- $\left(\frac{m_{\mu}}{m}\right)^2 \sim 4 \times 10^4 \qquad \left(\frac{m_{\tau}}{m}\right)^2 \sim 1 \times 10^7$
- 5TeV scale NP would affect a_e , a_μ , a_τ at 1×10^{-14} , 4×10^{-10} , 1×10^{-7} level
- Muons offer most realistic opportunity for NP observation
- Note also that the NP has to be flavour and CP conserving, and chirality flipping - related to EWSB
- Motivates extended Higgs models (2-Higgs doublet, high $tan(\beta)$ SUSY)
- Sensitivity outside of EWSB Dark sector

Joe Price | g-2 experiments 24/09/19

Sensitivity to new physics is proportional to the squared mass of the probe

Muon - Current status

- New combination (KNT18) has not moved central value significantly, reduced uncertainties
- > 3.5σ discrepancy persists
- Theory groups are making progress to achieve competitive uncertainties on same time scale as new g-2 experiments...

PRD 97 114025 (2018)

Upcoming muon g-2 measurements

- BNL measurement was statistically limited!
- 2 experiments that aim to measure a_u: Fermilab and JPARC

- Aiming for factor 4 improvement on BNL number, 21 × total muons!

Both rely on highly uniform B-field and high intensity polarised muon beams

• Fermilab g-2 ia BNL style experiment that has been taking data for 2 years

- magnetic storage ring

• If
$$g = 2, \omega_a = 0$$

•
$$g \neq 2, \omega_a \approx (e/m_\mu)a_\mu B$$

Real World Considerations

- Muon beam has a small vertical component

$$\vec{\omega}_a = \frac{e}{mc} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2} - \frac{1}{\gamma^2} \right) \right]$$

- This introduces an unwanted $\beta x E$ term...
- ... unless $\gamma = 29.3$, then E-field term vanishes: we call this the "magic" momentum (3.094 GeV)
- Leaves 2 effects that we can't ignore:
 - Not all muons are exactly at magic momentum
 - Some small degree of vertical motion of muons (reduces effective B-field)
- We use tracker and beam dynamics models to calculate the small corrections for these (< 1 ppm)

We need to use Electric fields to focus the beam so we can store the muons $\frac{1}{-1} \left| \vec{\beta} \times \vec{E} - a_{\mu} \left(\frac{\gamma}{\gamma + 1} \right) \left(\vec{\beta} \cdot \vec{B} \right) \vec{\beta} \right|$

Measuring the muon spin...

 e⁺ preferentially emitted in direction of muon spin $s_{
u_e}$ μ^+

Joe Price | g-2 experiments 24/09/19

 Asymmetry is larger for high momentum e+ Optimal cut at E~1.8 GeV

Measurement Principle

- Three ingredients to measure $a_{\mu} \sim (\omega_a / \tilde{\omega}_p)$
 - ω_a : Arrival time spectrum of high energy positrons
 - ω_p : Magnetic field in storage region measured by proton NMR
 - $\tilde{\omega}_{\rm p}$: Muon distribution to get weighted magnetic field frequency

Joe Price | g-2 experiments 24/09/19

Systematic Uncertainty Comparison: E821 and E989

$a_{\mu} = \frac{\omega_a}{\tilde{\omega}_p} \frac{\mu_p}{\mu_e} \frac{m_{\mu}}{m_e} \frac{g_e}{2}$

- New hardware (calorimeters, trackers, NMR)
- Improved analysis techniques
- Reduce uncertainties by at least a factor of 2.5

ωa Goal: Factor of 3 Improvement			
Category	E821 (ppb)	E989 Goal (ppb	
Gain Changes	120	20	
Lost Muons	90	20	
Pileup	80	40	
Horizontal CBO	70	< 30	
E-field/pitch	110	30	
Quadrature Sum	214	70	

CategoryE821 (ppb)E989 Goal (ppb)Field Calibration5035Trolley Measurements5030Fixed Probe Interpolation7030Muon Convolution3010Time-Dependent Fields-5Others10050Quadrature Sum17070	ω_p Goal: Factor of 2.5 Improvement			
Field Calibration5035Trolley Measurements5030Fixed Probe Interpolation7030Muon Convolution3010Time-Dependent Fields-5Others10050Quadrature Sum17070	Category	E821 (ppb)	E989 Goal (ppb	
Trolley Measurements5030Fixed Probe Interpolation7030Muon Convolution3010Time-Dependent Fields-5Others10050Quadrature Sum17070	Field Calibration	50	35	
Fixed Probe Interpolation7030Muon Convolution3010Time-Dependent Fields-5Others10050Quadrature Sum17070	Trolley Measurements	50	30	
Muon Convolution3010Time-Dependent Fields-5Others10050Quadrature Sum17070	Fixed Probe Interpolation	70	30	
Time-Dependent Fields-5Others10050Quadrature Sum17070	Muon Convolution	30	10	
Others 100 50 Quadrature Sum 170 70	Time-Dependent Fields	_	5	
Quadrature Sum17070	Others	100	50	
	Quadrature Sum	170	70	

Run 1 Overview

- Data taking period: April—July 2018
- Accumulated ~ 1.4 x BNL statistics (after data quality cuts) $\delta \omega_a$ (stat) ~ 350 ppb
- Field uniformity ~ 2x better than BNL

Run 1 Analysis Status: ω_a

30 24/09/19 Joe Price I g-2 experiments

Simple five-parameter fit

Run 2 Overview

- More data taken during 2019
- Field uniformity expected to be similar to run 1

Azimuthal average 250-ppb contours

Joe Price | g-2 experiments 24/09/19

Can take 5% of a BNL per day!

Muon g-2 summary

Theoretical calculations

- Highly sensitive test of the SM with discrepancy between theory and experiment at the 3.7σ level
- Improvements in Lattice techniques becoming competitive for HVP uncertainty
- New data for HVP improving uncertainty, and not moving central value
- Data driven methods for HLbL agree with theory, too soon for competitive uncertainties
- On course for improvement on same time scale as Fermilab result **The Fermilab Muon g-2 Experiment**
- Completed Run 1 in July 2018: result planned for late 2019. Statistic ~1.5 x BNL
- Run 2 completed July 2019 another ~1.8 x BNL
- Taking 5% of a BNL a day, on course for 21 BNLs over next 2 years Run 3 begins next month
- No new systematic uncertainties unearthed, all at or below target level for run 1
- Aiming for $>5\sigma$ result (if central value remains the same as BNL) at end of year

EDM measurements at muon storage rings

- Precession plane tilts towards center of ring
- Causes an increase in muon precession frequency
- Oscillation is 90° out of phase with the a_{μ} oscillation
- $\omega_{tot} = \sqrt{\omega_a^2 + \omega_\eta^2}$
- JPARC g-2/EDM is more sensitive possible 100 x improvement

Joe Price I g-2 experiments 24/09/19

10 x improvement to current limit expected at FNAL - trackers improved since BNL

Beyond Diagonal terms - Flavour violation

Charged counterpart to neutrino oscillations

- MDM: Diagonal terms ch CP F
- EDM: Phase ch OP F*
- CLFV: Off diagonal terms: ch CP*(F)
- Sensitive to NP independent to MDM, and probe higher scales (10⁴ TeV)
- CLFV already exists in SM, via neutrino mixing at ~10⁻⁵⁴ level
- BSM models that generate small m_v often involve CLFV

ch = chirality**CP** = charge parity F = flavour

*(potential F violation if not linear mass scaling arxiv:1807.11484)

* (CP violation possible in off diagonal terms)

Charged Lepton Flavour Violation (CLFV)

- Require muons p < 50 MeV and stopping target (thickness ~1mm)
- Look for $\mu \rightarrow e$ in 3 channels, UK involvement in all 3

Can use high intensity muon beams to look for charge lepton flavour violation

MEG and MEG II

- Located at PSI $\mu^+ \rightarrow e^+ \gamma$
- Signal: simultaneous e⁺, γ both E=m_µ/2, 180°
- Use low rate beam to reduce accidental bg
- Upgrade starts this autumn
- Aiming for factor 10 improvement

COBRA magnet

$BR(\mu \to e\gamma) < 4.2 \times 10^{-13} \ (@90\% CL)$

Mu3e $\mu^+ \rightarrow e^+ e^+ e^-$

- Located at PSI
- Signal: 3 simultaneous e (1MeV < E < $m_{\mu}/2$), same vertex
- Accidental and can be kept down with energy and vertex resolution
- Aiming for BR($\mu^+ \rightarrow e^+ e^+ e^-$) < 5 × 10⁻¹⁵ (@90% CL) in Phase I

24/09/19 Joe Price I g-2 experiments

$E < m_{\mu}/2$), same vertex ith energy and vertex resolution $^{-15}$ (@90% CL) in Phase I

 $\sigma(t) < 1 \text{ ns}$

Mu2e and COMET $\mu^- N \rightarrow e^- N$

- Measure rate of conversions to tnuclear muon capture (R_{ue}(AI))
- Signal: monoenergetic electron at $E_e = 104.394$ MeV/c
- COMET Phase I will improve current limit by 2 orders of magnitude

Joe Price | g-2 experiments 24/09/19

 Enhancement in sensitivity to CLFV due to small orbital radius of trapped μ • Mu2e and COMET Phase II will both get to $R_{ue}(AI) = 7 \times 10^{-17}$ (@90% CL)

Timescale and Physics Reach

- 10 10⁴ improvement in current limits in all 3 channels within 10 years
- upgrades, and possible tau flavour violating experiments

Physics program extends beyond the next 10 years with COMET and Mu2e

Conclusions

- Now play a significant role in COMET, mu2e, mu3e and Muon g-2
- Dipole moments:
 - Short term (~1 yr): μ g-2 result and μ EDM search FNAL
 - Longer term (~10 yrs): μ g-2 @ JPARC, further sensitivity to μ EDM
- CLFV:
 - Short term (~5 yrs): Mu3e and Mu2e data taking, COMET phase I result
 - Longer term: Mu2e II, PRSIM, Mu3e phase II

10 years ago the UK had very little involvement in muon physics program

41 24/09/19 Joe Price I g-2 experiments

42 24/09/19 Joe Price | g-2 experiments

Hadronic Vacuum Polarization

- **BESIII:** 3x more data available, luminosity measurement improvements
- **CMD3:** Will measure up to 2 GeV (energy scan, ISR good cross check)

Joe Price | g-2 experiments 24/09/19

Physics Beyond the Standard Model?

SUSY, TeV-Scale Models

- Higgs measured at the LHC to be ~125 GeV
- Theory: Higgs should acquire much heavier mass from loops with heavy SM particles (e.g., top quark)
 - Supersymmetry: new class of particles that enters such loops and cancels this contribution

Complementary to direct searches at the LHC

- Sensitivity to $sgn(\mu)$, $tan(\beta)$
- Contributions to a_µ arise from charginos, sleptons
- LHC searches sensitive to squarks, gluinos

D. Hertzog, Ann. Phys. (Berlin), 2015, courtesy D. Stockinger

Z', W', UED, Littlest Higgs Assumes typical weak coupling

Radiative muon mass generation

Unparticles, Extra Dimension Models, SUSY (tan $\beta = 5$ to 50)

Dark Matter

- **Cosmological observations** (galaxy rotation curves, lensing) point to much more mass in the universe than expected
- Many theories to explain dark matter
- A new U(1)' symmetry: dark photon A'
 - Could impact the muon's magnetic moment
 - Many direct-detection searches underway

Magnet Anatomy

• For E821, Gordon Danby had a brilliant magnet design

B = 1.45 T (~5200 A)

• Non-persistent current: fine-tuning of field in real time

12 C-shaped yokes

- 3 upper and 3 lower poles per yoke
- 72 total poles

Shimming knobs

- Pole separation determines field: pole tilts, non-flatness affect uniformity
- Top hats (30 deg effect, dipole)
- Wedges (10 deg effect, dipole, quadrupole)
- Edge shims (10 deg effect, dipole, quadrupole, sextupole)
- Laminations (1 deg effect, dipole, quadrupole, sextupole)
- Surface coils (360 deg effect, quadrupole, sextupole,...)

Magnetic Field Comparison: BNL 821 and FNAL E989

Dipole Vs Azimuth

• BNL E821: 39 ppm RMS (dipole), 230 ppm peak-to-peak • FNAL rough shimming: 10 ppm RMS (dipole), 75 ppm peak-to-peak

 Laminations very successful in reducing field variations

Graphite target (20 mm)

Muon g-2 at JPARC

sparationneutron

Surface muchst

24/09/19 Joe Price I g-2 experiments 47

3 GeV 333 uA proton beam from MUSE H-line at JPARC

Muor

JPARC Facilities

Images from Tsutomu Mibe

Joe Price I g-2 experiments 24/09/19 48

μ

JPARC Facilities

(KEK/IAFA)

Images from Tsutomu Mibe

Joe Price I g-2 experiments 24/09/19 49

The Muon g-2 Experiment at JPARC

- New experiment being prepared in Japan
- Features
 - Low-emittance muon beam
 - 40 silicon high-resolution tracking vanes
 - High-uniformity storage field (~ 1 ppm)
- Different technique \rightarrow different systematics
 - Excellent cross-check against E989 at FNAL

The Muon g-2 Experiment at JPARC: Current Status

- Various systems are progressing forward
 - Beamline
 - e⁺ trackers
 - Magnetic field

Cross Calibration at ANL Feb 2019

Images from Tsutomu Mibe (KEK)

Muon g-2 Experiment Comparison

Parameter	E34 @ JPARC	E989 @ Fermilab
Beam	High-rate, ultra-cold muon beam (p = 300 MeV/c)	High-rate, magic-momentum muons (p = 3.094 GeV
Polarization	P _{max} = 50-90% (spin reversal possible)	$P \approx 97\%$ (no spin reversal)
Magnet	MRI-like solenoid (r _{storage} = <mark>33 cm</mark>)	Storage ring (r _{storage} = 7 m)
B-field	3 Tesla	1.45 Tesla
B-field gradients	Small gradients for focusing	Try to eliminate
E-field	None	Electrostatic quadrupole
Injection	Spiral + kicker (~90% efficiency)	Inflector + kicker (~5% efficiency)
Positron detector	Silicon vanes for tracking	Lead-fluoride calorimeter
B-field measurement	Continuous wave NMR	Pulsed NMR
Current sensitivity goal	450 ppb	140 ppb

$\nu_{12} = 1.906 \text{ GHz}$ $\Delta \nu = \nu_{12} + \nu_{34}$ **Related Muon Physics** TM210

Joe Price | g-2 experiments 24/09/19 53

9 556 CH

TM110

• Recall the expression for a_{μ} :

54 24/09/19 Joe Price I g-2 experiments

$a_{\mu} = \frac{\omega_a}{\tilde{\omega}_p} \frac{\mu_p}{\mu_e} \frac{m_\mu}{m_e} \frac{g_e}{2}$

- Recall the expression for a_{μ} :
- a_{μ} • m_{μ}/m_e value based on muonium hyperfine theory:

$$\Delta \nu_{\rm Mu}({\rm Th}) = \frac{16}{3} c R_{\infty} \alpha^2 \frac{m_e}{m_{\mu}} \left(1 + \frac{m_e}{m_{\mu}}\right)^{-3} + \text{higher ord}$$

• Equate theory to experiment, treat m_{μ}/m_{e} as a free parameter, obtain m_{μ}/m_e to 22 ppb

der terms

- Recall the expression for a_{μ} :
- m_{μ}/m_e value based on muonium hyperfine theory:

$$\Delta \nu_{\rm Mu}({\rm Th}) = \frac{16}{3} c R_{\infty} \alpha^2 \frac{m_e}{m_{\mu}} \left(1 + \frac{m_e}{m_{\mu}}\right)^{-3} + \text{higher ord}$$

- Equate theory to experiment, treat m_{μ}/m_{e} as a free parameter, obtain m_{μ}/m_e to 22 ppb
- Muonium hyperfine splitting at JPARC aims to improve precision by a factor of 10 for μ_{μ}/μ_{p} to << 120 ppb

der terms

- Recall the expression for a_{μ} :
- m_{μ}/m_e value based on muonium hyperfine theory:

$$\Delta \nu_{\rm Mu}({\rm Th}) = \frac{16}{3} c R_{\infty} \alpha^2 \frac{m_e}{m_{\mu}} \left(1 + \frac{m_e}{m_{\mu}}\right)^{-3} + \text{higher ord}$$

- Equate theory to experiment, treat m_{μ}/m_{e} as a free parameter, obtain m_{μ}/m_e to 22 ppb
- Muonium hyperfine splitting at JPARC aims to improve precision by a factor of 10 for μ_{μ}/μ_{p} to << 120 ppb
- Allows extraction of a_{μ} independent of theory:

$$a_{\mu} = \frac{\omega_{a}/\tilde{\omega}_{p}}{\mu_{\mu}/\mu_{p} - \omega_{a}/\tilde{\omega}_{p}}$$

der terms

Run-1 Analysis Status — ῶ_p

58 24/09/19 Joe Price I g-2 experiments

Position of the beam

- Use Trackers to measure the beam
- Extrapolate tracks back through Bfield to point of radial Tangency
- Observe beam moving in time
- Use Trolley-Fixed probe interpolation to tell us the field at these positions

Joe Price | g-2 experiments 24/09/19

Tracker Calorimeters 🛟 Fermilab

Run 1 Analysis Status: $\tilde{\omega}_p$ – Field Interpolation

- Need to determine ω_p at all times while storing muons
- Interpolate between trolley maps using fixed probe data
- Tracking algorithms showing good agreement with trolley runs
- Also tracking higher-order multipole moments important for extracting $\tilde{\omega}_{p}$

trolley runs

- Monitor beam profile before entrance with scintillating X and Y fibres
- Get time profile of beam using
 scintillating pad
- ~125ns wide

 Cancel B-field during injection using Inflector, so muons can get into the ring

Kicker magnets

- After inflector, muons enter storage region at r = 77 mm outside central closed orbit
- Deliver pulse in < 149 ns to muon beam
- Steer muons onto stored orbit

Electrostatic quadrupoles

- Drive the muons towards the central part of storage region vertically
- Minimizes beam "breathing", improves muon orbit stability
- Aluminum electrodes cover ~43% of total circumference

24 segmented PbF₂ crystal calorimeters

- Each crystal array of 6 x 9 PbF₂ crystals - 2.5 x 2.5 cm² x 14 cm (15 X_0)
- Readout by SiPMs to 800 MHz WFDs (1296 channels in total)

Joe Price | g-2 experiments 24/09/19 67

Run 1 Analysis Status: ω_p – Field Calibration

- In the experiment, need to extract ω_p ; however, don't have free protons
 - Need a calibration
- Field at the proton differs from the applied field

$$\omega_p^{\text{meas}} = \omega_p^{\text{free}} \Big[1 - \sigma (\text{H}_2 \text{O}, T) \Big]$$

Protons in H₂O molecules, diamagnetism of electrons screens protons => local B changes

μ_{proton}

ω_p **† B**

Known to 5 ppb

Goal: Determine total correction to \leq 35 ppb accuracy

These are **static** corrections; need to worry about **dynamic** ones too (radiation damping, RF coil inhomogeneity, time dependence of gradients, ...)

Joe Price I g-2 experiments 24/09/19

Known to 2.5 ppb

Run 1 Analysis Status: ω_p – Field Calibration

Plunging Probe

- Achieved small perturbation of plunging **probe** ~ (-5.0 ± 6.5) ppb
- Quantified uncertainties on plunging probe material, dynamic effects — under budget of **35 ppb**

Trolley Calibration

- **Calibration of trolley probes under control**
- Factor of ≥ 2 improvement on uncertainties for nearly all probes compared to E821
- Uncertainty is ~ 26 ppb on average per probe under budget of **30 ppb**

Plunging Probe Uncertainties			
Effect	inty (pp		
Probe Perturbation to Field (includes impacs)	6.5		
Radiation Dampin	20		
Proto Vipolar Field	2		
Oxygen Contemination of Water Sample	< 1		
TOTAL	21		

Blinded Trolley Calibration Coefficients

Run-1 Analysis Status – ω_a

70 24/09/19 Joe Price I g-2 experiments

Run 1 Analysis Status: ω_a

• Account for a number of effects that can affect the extraction of ω_a

Detector effects

$N(t) = N_0 e^{-t/\tau} \left[1 - A \cos\left(\omega_a t + \phi\right)\right]$

Run 1 Analysis Status: ω_a

• Account for a number of effects that can affect the extraction of ω_a

Beam dynamics

- Muons can leave storage ring by decaying or escaping
- Exhibit specific signature in multiple calorimeters
- Amplitude N₀ scaled by:

$$\Lambda(t) = 1 - K_{\text{loss}} \int_0^t e^{t'/\tau} L(t') dt'$$

Joe Price | g-2 experiments 24/09/19

$N(t) = N_0 e^{-t/\tau} \left[1 - A \cos\left(\omega_a t + \phi\right)\right]$

Coherent betatron oscillations (CBO)

- Acceptance of calorimeters affected by coherent radial beam motion
- Track Time [us]
- Amplitude N₀ scaled by:

$$C(t) = 1 - e^{-t/\tau_{\rm CBO}} A_1 \cos\left(\omega_{\rm CBO} t + \phi_1\right)$$

Why Fermilab?

- BNL limited by statistics
 (540 ppb on 9 x 10⁹ detected e⁺)
- E989 goal: Factor of 21 more statistics (2 x 10¹¹ detected e⁺)

Fermilab advantages

- Long beam line to collect $\pi^+ \rightarrow \mu^+$
- Much reduced amount of p, π in ring
- 4x higher fill frequency than BNL

Monitoring and Mapping the Magnetic Field

Fixed probes on vacuum chambers

• Measure field while muons are in ring – 378 probes **outside** storage region

Trolley probes calibrated to free-proton Larmor frequency

- Calibrate trolley probes using a special probe that uses a water sample
- Measurements in specially-shimmed region of ring

Trolley matrix of 17 NMR probes

• Measure field in storage region during **specialized** runs when muons are not being stored

• arxiv 1303.4097

24/09/19 Joe Price I g-2 experiments

Updated from A. de Gouvea, P. Vogel, arXiv:1303.4097

