

The muon g-2 experiment at Fermilab

European Physical Society (EPS) – July 2019

Marco Incagli – INFN Pisa

"g-2" : a precision test of Standard Model

$$\vec{\mu}_P = \underbrace{-g_P}{\frac{e}{2m_P}} \frac{\bar{S}}{\bar{S}}$$

$$a_p = \frac{g_p - 2}{2}$$

$$a_{\mu} = (11\ 659\ 181.7\pm 4.2)\ \times\ 10^{-10}$$

- **g**_P : proportionality between spin and magnetic moment for particle P
- a_P : anomalous magnetic moment
- $a_P = 0$ at tree level (purely) Dirac particle)
- The measurement of "g-2" or, more correctly, of the *anomalous magnetic moment* a_{μ} , allows
 - for a precise test of the Standard Model
 - to look for New Physics

Contributions to a_{μ}

1948, first big success of QED : $a^{exp} = 0.00118 \pm 0.00003$ Kush & Foley $a^{the} = \alpha/2\pi = 0.00116$ Schwinger

Contributions to a_{μ}

HLbL = Hadronic Light by Light = Hadronic higher order

VALUE ($\times 10^{-10}$ $11658471.8951 \pm 0.0009 \pm 0.0019 \pm 0.0007 \pm 0.0077_{\alpha}$ QED $(\gamma + \ell)$ HVP(lo) Davier17 HLbL Glasgow EW Total SM Davier17

theoretical error comparable with experimental one: E821 @BNL $\delta a_{\mu}(Expt) = \pm 6.3$ (10⁻¹⁰ units)

UNITS 692.6 ± 3.33 10.5 ± 2.6 15.4 ± 0.1 $11\,659\,181.7\pm4.2$

5

Experiment

The "g-2 Test" has continued to point to something interesting

E821 = BNL experiment

Sensitivity to new physics at the TeV scale!

Very generally New Physics contributions to a_u take the form:

New Physics coupling

a_u is a flavor and CP conserving, chirality flipping loop induced quantity.

e.g.: in SUSY it is sensitive to charginos and sleptons. LHC direct searches are sensitive to squarks and gluinos.

$$a_{\mu}^{SUSY} \approx 130 \times 10^{-11} \frac{m_{\mu}^2}{M^2} \tan \beta$$

Ratio of the vacuum expectation value for the two Higgs doublets* (5-50)

The Fundamental Experimental Principle

Difference between spin precession and cyclotron motion for a muon (charged particle with spin) in a magnetic field*:

$$\omega_a = \omega_s - \omega_c = g \frac{e}{2m} B - \frac{e}{m} B = a_\mu \frac{e}{m} B$$

*s and p are assumed to be in a plane perpendicular to B

- simple classical calculation;
- the relativistic approach provides the same result!

The basic (ideal) equation

Inverting the previous simple (ideal) equation:

$$a_{\mu} = \frac{m_{\mu}}{e} \frac{\omega_{a}}{B} = \frac{g_{p}}{2} \frac{m_{\mu}}{m_{p}} \frac{\omega_{a}}{\omega_{p}} = \frac{R_{\mu}}{\lambda - R_{\mu}} \quad ; \quad R_{\mu} = \frac{\omega_{a}}{\omega_{p}} ,$$

- The B-field is expressed in terms of the proton precession $\omega_{\rm p}$ (measured by NMR probes inserted in the ring)
- a_{μ} is proportional to the ratio of muon to proton precession in the same magnetic dipole field
 - $-\omega_a$ (muon precession) : particle physics techniques
 - $-\omega_{p}$ (proton precession) : nuclear physics techiniques

$\lambda = \frac{\mu_{\mu}}{\mu_{p}}$

Effects of Beam Dynamics

 The *full equation* is more complex and corrections due to radial (x_{e}) and vertical (y) beam amplitude and shape are needed

$$\vec{\omega}_a = \vec{\omega}_S - \vec{\omega}_C = -\frac{e}{mc} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} - a_\mu \left(\frac{\gamma}{\gamma + 1} \right) \left(\vec{\beta} - \frac{1}{\gamma + 1} \right) \left(\vec{\beta$$

- Running at γ_{magic} =29.3 (p_u=3.094 GeV/c) this coefficient is null
- Because of beam spread \rightarrow E-field Correction
- Vertical beam oscillations, field felt by the muons is reduced \rightarrow Pitch Correction

• Three different communities converging to measure a_{μ}

11/07/19 Marco Incagli - INFN Pisa 11

The accelerator complex : Fermilab

- 8 GeV/c proton beam from Booster to Recycler Ring
- protons hit target and 3.1 GeV/c pions are selected
 - pions decay in the Delivery Ring ≃ 2 km
- muons are sent to the "Muon Campus" where "g-2" and "Mu2e" experiments are located
- (cannot run together!)

STORAGE RING

FIELD: wp

DETECTORS: wa

1/ 7

Inflector

24 Calorimeters + 2 trackers located all around the ring

NMR probes and electronics located all around the ring

Marco Incagli - INFN Pisa

QUADS

How to measure ω_a

- To measure the Spin precession with respect to the particle *momentum* (ω_a), two ingredients are needed:
 - a polarized muon beam
 - -a way to measure muon Spin as a function of time (= a polarimeter)

Polarization of incoming muons

Use V-A structure of weak current to build a polarized beam...

 Selecting 3.094 GeV/c muons from 3.11 GeV/c pion decays yields a muon beam with a net polarization of about 95% (see g-2 TDR for details)

Polarimeter: muon decay

 μ^+ Center of Mass e⁺ Maximum p : parallel $\overline{\mathbf{v}}$

$$N(t) = N_0 e^{-t/\tau} \left(1 + A\right)$$

- positron emission direction is correlated with muon spin
- the number of observed positrons oscillates with an amplitude A(E) depending on e⁺ *momentum: the Asymmetry* A(E) can be positive, null or negative

Minimum p : antiparallel

$\cos(\omega_a t + \varphi)$

Nuber of positrons vs time: analysis methods

 $N_{ideal}(t) = N_0 \exp(-t/\tau_{\mu}) \left[1 + A\cos(\omega_a t + \varphi)\right]$

- **T-method** (time integrated) : count all positrons with $E > 1.7 GeV \rightarrow$ reference method («Wiggle plot»)
- E-method (Energy binned) : fit each energy slice, combine the resulting values for ω_{a}
- A-method (Asymmetry weighted) : weight each event with its own asymmetry A(E)
- **R-method** (Ratio) \rightarrow backup
- **Q-method** (Charge) → backup

The wa analysis strategy

- 6 groups perform an independent analysis by using different **Reconstruction algorythms** and different Fit methods
- The result of the fit is *blinded* (=hidden)
- A dataset corresponding to ~10% of BNL has been relatively unblinded

Team	Reconstruction	Analysis
CU (Cornell)	East	T,E
UW (Washington)	West	T,A
Europa (Italy+UK)	West/Europa	T,A
SJTU (Shangai)	West	T,E
BU (Boston)	West	T,R
Uky (Kentucky)	Q	Q

Run 1 Overview

- Data taking period: April—July 2018
- Accumulated statistics corresponding to ~1.3 times the previous BNL experiment: $\delta \omega_a(\text{stat}) \sim 400 \text{ ppb}$ (BNL $\delta \omega_a(\text{stat}) \sim 460 \text{ ppb}$)

BNL

Run 1 Overview

- In Run1, data have been taken in different Quadrupole and Kicker settings, while optimizing Storage Ring operations
- Run2 data are much more uniform
- Six datasets identified, for a total of ~ 10 Billion positrons:

	Name	Date acquired	Quad n	Kicker [kV]	Posit
<	60 hour	22-25 / 4	0.108	128-132	1.0
	High Kick	26/4 - 2/5	0.120	136-138	1.2
	9 day	4-12 / 5	0.120	128-132	2.4
	Low Kick	17-19 / 5	0.120	123-127	1.2
	Superlow Kick	2-6 / 6	0.108	117-119	0.5
	End Game	6-29 / 6	0.108	122-127	4.0

The 60h dataset: 5-par fit

Simple (ideal) positron oscillation:

 $N_{ideal}(t) = N_0 \exp\left(-t/\tau_{\mu}\right) \left[1 + A\cos(\omega_a t + \varphi)\right]$

This simple fit is clearly not sufficient and well defined resonances are observed in the residuals

Structure in residual: Beam Oscillations

Coherent Betatron Oscillations (CBO) sampled by each detector at one point around the ring

- Beating effect: the frequency measured by any one detector is $f_{CBO} = f_C - f_x$ (much smaller than both individual freqs)
- Similar effect in vertical direction

Residuals for two datasets

The betatron oscillations depend on the beam parameters \rightarrow different for each Run1 dataset: to be fitted separately

Distorting muon life time: lost muons

- Muons at the border of the beam phase space hit the collimators and bend (tipically) inward
- This happens mostly in the first microseconds, distorting muon exponential decay

$$N(t) = N_0 e^{-t/\tau} \cdot \Lambda(t) \cdot \left(1 + A \cos(\omega_a t + \varphi)\right)$$

Lost muons identified as MIPs in 2 or 3 consecutive calorimeters with $\Lambda t \sim 6.2$ nsec

9-par fit

The effect of Coherent Betatron Oscillation is parametrized as a factor with similar structure as the muon modulated decay

10-par fit: adding lost muons

Including the *lost muons* term removes the peak at *f=0* in the FFT plot

14-par fit: adding vertical oscillation

- 60 hour
- Vertical oscillations (*vertical waist*) parametrized as an exponential term times an oscillation

27 11/07/19 Marco Incagli - INFN Pisa

Full fit on 2 datasets

- Presented at the last «g-2 Physics Week» (Elba Island, Italy, May 27-31, 2019)
- Results by 2 groups; similar by other analyzers \rightarrow next slides

First combination of results

 Results on wa for the first dataset (the 60-Hour ~ 10% BNL) have been compared among analyzers by applying a common blinding procedure

common blinding

First combination of results

E821 @BNL

The (next) future ...

- Confirming E821@BNL central value, even with the same error, is extremely important! \rightarrow Run1
- At the end of Run4 (2021), with a statistics ~15 times BNL, the discrepancy can become significant, assuming central value holds!

Summary & Outlook

- Analysis of Run1 going on
- Expected total error $\delta \omega_a / \omega_a$ (Run1) ~ 0.5 ppm, similar to BNL one: important check of central value
- 6 datasets to be fitted independently
- Publication expected by calendar year 2019 ...
- ... Run2 (apr-jul 2019) provided 2.2 additional «BNL equivalent», with more stable beam conditions
- Waiting for this new data to be processed and studied implies a delay in the publication of ~1 year
- Decision will be taken in September 2019

Systematics on ω_a

- The goal of the Fermilab experiment is to reduce the systematic error on ω_a **180** \rightarrow **70 ppb**
 - Improved Calorimeters
 - New Laser control system

New Tracker

Category	E821	E989 Improvement Plans	Goal	
	[ppb]		[ppb]	<u>Ke</u>
Gain changes	120	Better laser calibration		Γ.
		low-energy threshold	20	La
Pileup	80	Low-energy samples recorded		
		calorimeter segmentation	40	Ca
Lost muons	90	Better collimation in ring	20	Ca
CBO	70	Higher n value (frequency)		
		Better match of beamline to ring	< 30	In
E and pitch	50	Improved tracker		
		Precise storage ring simulations	30	Tr
Total	180	Quadrature sum	70	

ey element:

- ser
- alo + Laser
- alo + Laser
- flector + Kicker
- acker

R-method (Ratio)

- Ratio method: randomly split dataset in 2 subsets shifted by ±half a g-2 period
- Build combinations of the 2 subsets which eliminates the exponential behaviour and leaves just a sinusoidal term $u^{\pm}(t) = N(t \pm T/2) = N_0 e^{-t/\tau \mp T/2\tau} \left(1 + A\cos(\omega_a t \pm \omega_a \frac{T}{2} + \varphi)\right)$

3 parameters fit: less sensitive to slow effects which divide out

Q-method

- No clustering: just integrate energy above threshold (in theory no threshold should be applied) for each crystal
- To reduce the amount of data stored offline, time bins are summed up in groups of 60
- The total energy per event fluctuates with ω_a frequency

The Laser energy-time calibration system

- State-of-the-art Laserbased calibration system
- 6 laser each one calibrating 4 calorimeters
- GAIN stability established to ~few x 10⁻⁴
- SYNC pulse before beam injection provides time synchronization
- ⁴ level \rightarrow fraction of laser light sent to redundant monitoring system

To keep laser stability at 10⁻

Scientific collaboration

Domestic Universities

- Boston
- Cornell
- Illinois _
- James Madison _
- Kentucky —
- Massachusetts ____
- Michigan —
- Michigan State —
- Mississippi —
- Northern Illinois _
- Regis —
- **UT** Austin —
- Virginia —
- Washington —

National Labs

- Argonne —
- Brookhaven —
- Fermilab ____

Italy

- Frascati
- Molise ___
- Naples —
- Pisa ____
- Roma 2 _
- Trieste
- Udine _

China

Shanghai —

- Germany
 - Dresden _

Russia

- JINR/Dubna —
- Novosibirsk _

- Lancaster
- Liverpool
- _

—

- CAPP/IBS
- KAIST ____

11/07/19

University College London

What could it mean if Expt \neq Theory at > 5 σ ?

Generically, "loop effects" couple to the muon mass and moment in similar fashion, characterized by a coupling, C $O(C) \left(\frac{m_{\mu}}{M}\right)^2$

M[GeV]

39

D(1)	radiative muon mass { [Czarnecki,Marciano '01]
	[Crivellin, Girrbach, Niers
$\mathcal{O}(\frac{\alpha}{4\pi}\ldots)$	supersymmetry (tan β
	vectorlike fermions
$O(\frac{\alpha}{4\pi})$	SM: Z, W. New phys
- <u>α</u>	2-Higgs doublet mode

Following Czarnecki, Marciano, and Stockinger

sics: Z', W'...-Higgs doublet model, dark photon .

ste '11][Dobrescu, Fox '10]

generation . . .

The attractive idea: SUSY

