The Mu2e e.m. calorimeter: crystals and SiPMs production status

Ivano Sarra LNF-INFN and Guglielmo Marconi University on behalf of the Mu2e calorimeter group

> October 1st, 2019 15th Int. Scint2019

Mu2e experiment design

- 1. Generate high intensity pulsed low momentum μ^- beam
- 2. Stop muons in an Al target \rightarrow trapped in orbit around the nucleus
- 3. Look for a mono-energetic-excess (105 MeV/c) in the electron momentum spectrum

Protons hitting target and

producing mostly $\tilde{\pi}$

Transport Solenoid

- Selects and transports low momentum $\mu^{\text{-}}$
- Filter out neutral particles

Detector Solenoid: stopping target & detectors

- Stops μ^{-} on Al foils
- Events reconstructed by detectors optimized for 105 MeV/c momentum
- Fully surrounded by veto for cosmic rays

Calorimeter requirements (INFN)

- The electromagnetic calorimeter (EMC) should provide high acceptance for reconstructing energy, time and position of conversion electrons (CE) and provide:
- 1) PID: e/µ separation
- 2) EMC seeded track finder
- 3) Fast and track-independent trigger

Requirements @ 105 MeV/c

- $\sigma_{\rm E}/{\rm E} = \mathcal{O}(10\%)$ for CE
- σ_T < 500 ps for CE
- σ_{X,Y} ≤ 1 cm
- Fast signals, τ<40 ns
- Operate in 1 T and in vacuum at 10⁻⁴ Torr
- Redundancy in readout (2 sensors+FEE /crystal)
- Radiation hardness (safety factor of 3):
 - 100 krad (45 krad) dose for crystals (sensors)
 - $3x10^{12}\,n_{1MeV}^{}/cm^2$ (6x10^{11} $n_{1MeV}^{}/cm^2$) for crystals (sensors)
- Low radiation induced readout noise < 0.6 MeV

Calorimeter Design

Two annular disks with 674 undoped CsI (34 x 34 x 200) mm^3 square crystals each

 \rightarrow 1/2 from SICCAS and 1/2 from St. Gobain

• $R_{IN} = 374 \text{ mm}, R_{OUT} = 660 \text{ mm}$

• Depth = $10 X_0$ (200 mm); Distance = 70 cm

• Redundant readout:

2 UV-extended SiPMs/crystal (Mu2e SiPMs)

- 50 um pixel, 12x18 mm² active area
 - \rightarrow from Hamamatsu
- 1 FEE / SiPM, digital readout on crates
- Long R&D phase to select final producer

~ 150 \

6x6 mm²

K1 👞

A1 🚽

 $i_1 \approx i_2 \approx i_3$ $C_{tot} \approx C/3$

October 1, 2019 • 4

Calibration source and laser

Laser system to monitor SiPMs gain and timing performance

Room for a spare laser

Large EMC prototype

Mechanics and cooling system but smaller scale \rightarrow Main goals:

- Integration and assembly procedures
- Test beam May 2017, 60-120 MeV e⁻ (@ 0° and @ 50°)
- Work under vacuum, low temperature, irradiation test

Readout: 1 GHz CAEN digitizers (DRS4 chip), 2 boards x 32 channels

2 FEE boards

• SCINT - Mu2e Calorimeter, I. Sarra

October 1, 2019 • 6

Module 0 Energy resolution

October 1, 2019 • 7

Module 0 Time resolution

- Single particle selection
- Log-normal fit on leading edge
- Constant Fraction method used \rightarrow CF = 5%

October 1, 2019 • 8

SCINT - Mu2e Calorimeter, I. Sarra

OA of components for production (2018-2019)

Dedicated QA laboratory at SiDet (FNAL) → production started on March 2018 Additional laboratories for crystals and irradiation testing at Caltech and HZDR

SCINT - Mu2e Calorimeter, I. Sarra

Crystals QA status

SICCAS

- 725/725 crystals received
- # out-of-specs crystals: 30
 - \rightarrow 4% of the production

St. Gobain problems persisting on the mechanical tolerance

Proposal of closing the contract & swapping to SICCAS for the rest of production in progress

Plan is to re-start production with SICCAS in 1 month from now ..

Crystals QA status

LRU

QA of crystal optical properties

Radiation Induced Noise extrapolated @ 1.8 rad/h, 200 ns gate

Optical cross-talk between adjacent crystals of ~ 2% observed in X Module 0 test beam data (Mu2e-doc-20862). Confirmed with laser measurements.

An extra wrapping of 50 mm Tedlar reduces the effect to a X negligible level

Adopted solution for disk crystal assembly: single Tedlar foil X between crystal planes + 1 Tedlar foil glued on Tyvek wrapping, on the aluminum taped side

October 1, 2019 • 11

SCINT - Mu2e Calorimeter, I. Sarra

SiPMs QA status

About 4000/4000 Mu2e SiPMs characterized → Producer: **HAMAMATSU**

• 280 pieces/month

• All 6 cells tested, measuring V_{br} , I_{dark} , Gain x PDE

SiPMs QA status

Radiation Hardness

- 5 SiPMs/batch "passively" neutron irradiated @ Dresden

For Mu2e, the max n-flux in SiPM area is of around (4)x10¹⁰ n/cm²

Safety Factor 3(MC)x5(Years) = 6 10¹¹ n/cm²

Max Idark current for operation of 2 mA

At the end of the run:

- requires cooling of -10 C,
- lower operation overvoltage to Vop-3V
- 20% of PDE relative loss

MTTF

- Requirement: grant an MTTF of 1 million hours at 0°
- sensors tested 18 days burn-in at 65°
- SiPM _{MTTF} > 10 million hours

Mu2e

Summary and Conclusions (INFN

- The Mu2e calorimeter concluded its prototyping phase satisfying the Mu2e requirements:
 - Un-doped CsI crystals perform well
 - Excellent LRU and LY > 100 pe/MeV (PMT+Tyvek wrapping)
 - T of 30 ns, negligible slow component
 - Radiation hardness OK: 40% LY loss at 100 krad
 - Mu2e SiPMs quality OK
 - High gain, high PDE, low I_{dark}, low RMS spread in array
 - SiPMs performance after irradiation OK → require 0 ° C cooling
 - SiPM MTTF > 10 million hours
 - Calorimeter prototypes tested with e⁻ beam
 - Good time and energy resolution achieved @ 100 MeV
- Calorimeter production phase started March 2018
 - Calorimeter assembly at the end of 2019
 - Calorimeter installation in Mu2e experimental hall planned for 2021