WP4
Calorimeter Software

State of art

R.Donghia, LNF-INFN

MUSE Scientific Board Meeting
March 8, 2019

Istituto Nazionale di Fisica Nucleare



C % INFN

Calo-software updates o

e Geometry: effect of the choice of calorimeter
mechanical material

* Calorimeter timing simulation

* Calorimeter trigger



Support material study

e Study of the effect of the choice of material for the inner support rings and the
thickness of the CF skin of the front plate. The material of the inner ring
investigated for completeness.

* Simulate 50K Ces with the latest calorimeter geometry for several configurations:

Support ring m CF Front plate thickness

Full CF Full CF 1.5 mm
Empty CF Full CF 1.5 mm
Al Full CF 1.5 mm
Full CF Empty CF 1.5 mm
Full CF Al 1.5 mm
Full CF Full CF 1.0 mm
Full CF = a solid block of CF
Empty CF = an outer CF shell, simulated as completely empty.

Default geom. = Full CF support ring, full CF inner ring, 1.5mm CF front plate.

Examine the energy resolution and efficiency as a function of the cluster energy.



GEANT4 geometry

Inner ring along crystals is
a single ring of 3x180mm

_ \ (Rx2).

N \\-.‘ )

Support ring at front and
back of inner ring.

Each ring is 22x15mm
(RxZ) in front/back of the
inner disk




Support ring result

* Cluster energy spectrum for different support ring material,
default inner ring / front plate.
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Support ring result (2)

Calorimeter Energy resolution

FWHMW2.35 = 3.71 +- 0.07 MeV
+ Mean = 7.6 + 0.1 MeV
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FWHMW/2.35 = 3.59 +- 0.08 MeV

Mean = 7.3 + 0.1 MeV
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Calorimeter Energy resolution

FWHM/2.35 = 3.60 +- 0.10 MeV

Mean = 7.4 + 0.1 MeV
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Mean energy loss differs by 0.3 MeV
between empty and Al, but systematic
uncertainty is large.

Resolution is similar within uncertainty.

Note: changing the fit range can change
the central value by 0.2-0.3 MeV.



Efficiency (%)

Support ring result (3)

Efficiency vs cluster energy cut Ratio Al/Vac and CF/Vac
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Left: Cumulative efficiency for reconstructing a shower with energy > threshold energy.
The denominator is given by the total number of generated CE.

Right: Ratio of efficiency for Al over Empty CF (Full CF / Empty CF). Absolute uncertainty
on ratio between 1-2%.
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Inner ring result

e Cluster energy spectrum for different inner ring material,
default support ring / front plate.
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Mean energy loss differs by 0.1MeV between empty and Al. Resolution similar within uncertainty.
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Inner ring result (2)

Efficiency vs cluster energy cut Ratio Al/Vac and CF/Vac
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Left: Cumulative efficiency for reconstructing a shower with energy > threshold energy.
The denominator is given by the total number of generated CE.

Right: Ratio of efficiency for Al over Empty CF (Full CF / Empty CF). Absolute uncertainty
on ratio between 1-2%.

There is essentially no difference between the three choices.



Front plate result
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Timing simulation
Logic scheme

Compression: Calo Reco Hit Proto-cluster
compress StepPointMC / —>  extract (fit) calo digis -> Form proto-clusters
SimPart
CaloShowerStep: Calo Hit Clusters
“realistic” hits in crystal combine reco hits Combine proto-clusters
along the crystal

v l v

Calo Digi: Calo Truth MC Cluster truth. MC
simulate packed digi hit Truth matching Truth matching

for each readout l

CaloMC Analysis
CaloReco
CaloCluster




Crystal time simulation

We start with SimParticles (particles) and StepPointMCs (energy deposits) produced by
Geant4 in each crystal - one SimParticle creates one or more StepPointMCs .

Collect and compress all StepPointMC / SimParticle in crystal slices:
1) For each crystal, collect all StepPoints associated to an incoming SimParticle.

2) Slice the crystal along the longitudinal axis into N slices (N=20 seems a good number).

3) Collect in each slice all the StepPoints within time window t0 + At (At: fraction of ns).

4) Create CaloShowerStep for each slice (record time / total energy / average position / SimParticle),

compressing the StepPointMCs for the given incoming SimParticle.

5) Take the first StepPoint after tO + At, set the new t0, and start again.

6) Then repeat for all SimParticles in a crystal and all crystals.

crystal
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“slice”

StepPointMCs
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CaloShowerStep

time

CaloShowerStep describe the
energy deposited by a incoming
particle at a given time in a given
crystal slice.

CaloShowerSteps from different
incoming particles can overlap in a
given crystal slice.

Can trace back information to all
incoming particles.



Readout signal

* Create signal in each crystal readout—> 3 steps:

1) Transform each CaloShowerSteps (compressed StepPointMC in a slice of a crystal
associated to an incoming particle at a given time) into an amount of scintillation light,
applying corrections on:

* -LRU

* Additional corrections can be implemented at this stage
(e.g. non-linearities in energy deposition)

2) Propagate the scintillation light to the readout and account for propagation time. We
assume the light propagates in straight line from the slice to the readout and model the
delay as a single number. We can introduce an additional smearing at this stage if needed

3) Simulate the readout response

* Generate the signal amplitude produced by the scintillation light, including statistical
* fluctuations from the number of p.e./MeV (Poisson distribution)

e (Calculate the waveform ADC values from a waveform template (see below)

e Add noise in each readout

* Produce the digitized output - similar to real data.



Readout signal

1) peak finding, scan waveform for local maxima (include scan of residuals).
2) fit waveform
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Noiseless waveforms — old examples

To do:
- Update waveform with new FEE output
- Implement the Module-0 TB result
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Next steps

Test the code

e Check that the hit extraction is working fine

* Check that the uncertainties are correctly calculated
* Evaluate and check MC timing resolution

Improve the current code
 Update to latest waveform

* Import current “beam test” timing extraction method
* Improve cluster timing

Improve the light propagation model
* Simulate individual PEs
 Measure waveform with point source
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