## Muon g-2 and Physics Beyond Standard Model

#### Atanu Nath

Istituto Nazionale di Fisica Nucleare - Sezione di Napoli, Naples, Italy.

On behalf of the Fermilab muon g-2 collaboration.

DEPARTMENT OF PHYSICS, ASSAM UNIVERSITY SILCHAR

Silchar, India

August 21, 2018







- I am from Lala, Hailakandi.
- Did my B.Sc (Physics) from the Dept. of Physics, *G. C. College*, Silchar (2007).
- M.Sc from the *S. N. Bose National Centre for Basic Sciences*, Kolkata (2010).
- Two years of graduate school course work at *Tata Institute of Fundamental Research*, Mumbai after M.Sc.
- Ph.D, University of Naples "Federico II", Naples, Italy, on modelling non-perturbative QCD techniques of the rare Kaon decays.
- Post Doctoral Fellow (Assegni di Ricerca), INFN (National Institute of Nuclear Physics), Naples, Italy in collaboration with Fermilab, USA.

g-2 theory g-2 experiments The new g-2 experiment (E989) at Fermilab

#### What is g and what's with that minus 2?

Consider a very crude model of an electron orbiting in a circle of radius r with a speed v. The magnetic moment  $\mu_{orb}$  will be given by the resulting current times the area of the circle:

$$\begin{array}{rcl} \boldsymbol{\mu}_{orb} & = & i \, \boldsymbol{A} \\ & = & \displaystyle \frac{-e}{2\pi r/v} \, \pi r^2 \, \hat{A} = - \frac{e}{2m} \boldsymbol{L}_{orb} \end{array}$$

where  $L_{orb} = r \times mv$ .

This expression also holds for a fundamental particle with intrinsic angular momentum S and charge Q provided we correct it with a factor g:

$$\mu = g \, rac{Q}{2m} \, oldsymbol{S}$$



AUS

Such a magnet when placed in a magnetic field experiences a torque that gives rise to a potential energy

$$U = -\boldsymbol{\mu} \cdot \boldsymbol{B}$$

## The 2 in g-2



In relativistic QM, the wavefunction of a spin 1/2 fundamental particle  $\ell$  with charge and mass  $e_\ell$  and  $m_\ell$  respectively, interacting with an external EM-field  $\mathcal{A}_\mu(x)$  obeys the Dirac's equation (in minimal coupling).

$$i\frac{\partial\psi}{\partial t} = \left[\boldsymbol{\alpha}\cdot\left(-i\boldsymbol{\nabla}-e_{\ell}\boldsymbol{\mathcal{A}}\right) + \beta m_{\ell} + e_{\ell}\boldsymbol{\mathcal{A}}_{0}\right]\psi$$

in the non-relatvistic limit this becomes the Pauli's equation with 2-component spinor  $\phi$ 

$$i\frac{\partial\phi}{\partial t} = \left[\frac{(-i\boldsymbol{\nabla} - e_{\ell}\boldsymbol{\mathcal{A}})^2}{2m_{\ell}} - 2\frac{e_{\ell}}{2m_{\ell}}\boldsymbol{S}_{\boldsymbol{\ell}} \cdot \boldsymbol{B} + e_{\ell}\boldsymbol{\mathcal{A}}_0\right]\phi$$

where  $S_{\ell} = \sigma/2$ , is the spin of the particle. Comparing the second term with  $U = -\mu \cdot B$  we see that Dirac's equation predicts  $g = 2 \implies g - 2 = 0$  for leptons. But is it??



**Lamb Shift** (1947): According to Dirac equation the energy difference between  $2S_{1/2}$  and  $2P_{1/2}$  levels of the Hydrogen atom should be zero.

#### Celebrated paper...

PHYSICAL REVIEW

VOLUME 72, NUMBER 3

AUGUST 1, 1947

AUS

#### Fine Structure of the Hydrogen Atom by a Microwave Method\* \*\*

WILLIS E. LAMB, JR. AND ROBERT C. RETHERFORD Columbia Radiation Laboratory, Department of Physics, Columbia University, New York, New York (Received June 18, 1947)

THE spectrum of the simplest atom, hydrogen, has a fine structure' which according to the Dirac wave equation for an electron moving in a Coulomb field is due to the combined effects of relativistic variation of mass with velocity and spin-orbit coupling. It has been considered one of the great triumphs of Dirac's theory that it gave the "right" fine structure of the energy levels. However, the experimental attempts to obtain a really detailed confirmation population and the high background absorption due to electrons. Instead, we have found a method depending on a novel property of the 2'S. level. According to the Dirac theory, this state exactly concides in energy with the 2'P<sub>1</sub> state which is the lower of the two P states. The S state in the absence of external electric fields is metastable. The radiative transition to the ground state 1'S<sub>1</sub> is forbidden by the selection the  $\Delta t = \pm 1$ . Calculations of Breit and Teller'

But the *Nobel* winning experiment based on atomic beam-microwave technique developed by Willis Lamb and carried out by Lamb and Retherford found a relative shift of 1058 MHz suggesting g slightly greater than 2! This result fueled the development of modern QED, the most successful theory in science so far.



## RQM is not complete!

- Relativistic QM is not complete.
- Soon Schwinger, Tomonaga, Feynman and others started developing Quantum Electrodynamics (QED), that soon earned the reputation of the "most accurate theory of nature" so far and it still stands so.
- Feynman developed his diagramatic method that simplified super-complicated calculations of QED.
- Schwinger despised this approach,

"Like the silicon chips of more recent years, the Feynman diagram was bringing computation to the masses".

Thanks to Feynman for that though.

Let's look at the digrams that represent contributions from virtual particles of the vacuum contributing to the magnetic moment of a particle.

g-2 theory g-2 experiments The new g-2 experiment (E989) at Fermilab



#### Anomalous magnetic moment of the electron



**Schwinger**'s One-loop calculation (1948): Dirac's g = 2 corresponds to the lowest order (tree diagram, that is no virtual particles involved!) result in QED, the first order correction (1-loop) was calculated by Julian Schwinger



$$\begin{array}{c} \mathbf{G}\\ \mathbf{2\pi}\\ \mathbf{JULIAN SCHWINGER}\\ \mathbf{2\cdot12\cdot1018} \leftarrow 7\cdot16\cdot1994\\ \mathbf{CLARICE CARROL SCHWINGER}\\ \mathbf{9\cdot23\cdot1917} \leftarrow 1\cdot9\cdot2011 \end{array}$$

$$\frac{g_e - 2}{2} = a_e = \frac{\alpha}{2\pi} + \mathcal{O}(\alpha^2)$$

The result wass so profound that it got engraved in his grave.

g-2 theory g-2 experiments The new g-2 experiment (E989) at Fermilab



#### What's running in the loops?



That blob includes everything that is allowed in nature, leptons, quarks, weak-bosons or something unknown to current physics, any virtual field can interact with the lepton  $\ell$  (that is running in a loop) in question and contribute to its  $g_{\ell}$  factor. This is precisely why  $g_{\ell}$  acts as an excellent probe to what's lurking in the vacuum, SM and/or BSM fields.

The anomaly is defined through the quantity  $a_{\ell} = (g_{\ell} - 2)/2$ . Total anomaly can be written as:

$$a_{\ell} = \underbrace{a_{\ell}^{QED} + a_{\ell}^{hadronic} + a_{\ell}^{weak}}_{\text{Standard Model}} + \underbrace{a_{\ell}^{BSM}}_{\text{New Physics}}$$
(1)

We need to know the SM contribution both theoretically and experimentally with equal precision in order to say something conclusive about the Beyond Standard Model part.

#### What's running in the loops?

Suppose a virtual particle of mass  $M_{loop}$  is running in the loop, contributions to the magnetic moment from such a loop enter as functions of  $m_\ell^2/M_{loop}^2$ 

$$a_\ell \sim f\left[rac{m_\ell^2}{M_{loop}^2}
ight]$$

therefore we can guess the mass of an unknown particle from such a loop if we separate all other known contributions from the complete result.



But why  $\mu$ ? What's wrong with e?

As we have seen, loop contributions enter as functions of  $m_{\ell}^2/M_{loop}^2$ 

$$a_{\ell} \sim f\left[\frac{m_{\ell}^2}{M_{loop}^2}\right]$$

electron being the lightest lepton, even in a one-muon loop  $M_{loop} = m_{\mu}$  implies  $(m_e^2/m_{\mu}^2)$  a contribution  $\mathcal{O}\left[10^{-10}\right]$ .

Muon is,

$$\frac{m_{\mu}^2}{m_e^2} \simeq 43000$$

times more sensitive than electron in sensing a heavy unknown particle. Although  $a_e$  has been measured to  $\sim 0.3$  part per billion, it is insensitive to any heavy new physics scales.





#### What's wrong with $\tau$ then?

 $\tau$  is the heaviest lepton therefore  $m_\tau^2/M_{loop}^2$  is the biggest for  $\tau$ , certainly  $a_\tau$  will be the most sensitive probe to any new physics.

Well it is and the theoretical calculation provides us with a very precise value of

 $a_{\tau} = 117721(5) \times 10^{-8}$ 

but it is so short-lived  $(10^{-13} \text{ seconds})$  that no practical experiment can be designed with the current technology, current experimental bound is

 $-0.052 < a_{\tau} < 0.013$ 

Even the sign is not known experimentally!!!

This leaves us with the only choice  $\mu$ .



Electron anomalous magnetic moment, as we have seen, has been caluclated so precisely because it's insensitive to heavier particles, therefore just QED calculation is enough. Muon situation is not that fortunate though! This is because,

- QCD has this beautiful (yet nasty!) property called the "*assymptotic freedom*", strength of attraction between two quarks increases as we pull them apart.
- Therefore long-distance (low-energy) calculations involving **quarks** and **gluons** are impossible using direct QCD, they rely on models and experimental data.
- That's why **hadronic** contributions introduce big uncertainties!





#### The hadronic issue!



From left to right we have **leading order QED**, weak and hadronic contributions, biggest uncertainty of course enters from the hadronic (quark and gluon loops) contributions, that, for now, can only be calculated using dispersion approach:

$$a_{\mu}^{had}[LO] = \frac{1}{3} \left(\frac{\alpha}{\pi}\right)^2 \int_{m_{\pi}^2}^{\infty} \frac{K(s)}{s} R^{(0)}(s) = 6931(33)(7) \times 10^{-11}$$

The red part is due to experimental data taken from  $\sigma(e^+e^- \rightarrow \text{hadrons})$ .



#### Standard model result

**QED** ( $\gamma$ ,  $\ell$ )

 $a_{\mu}^{QED} = (116584718.951 \pm 0.009 \pm 0.019 \pm 0.007 \pm 0.077_{\alpha}) \times 10^{-11}$ EW (W, Z)

$$a_{\mu}^{EW} = (154 \pm 1) \times 10^{-11}$$

Hadronic (quarks, gluons)

$$\begin{array}{ll} a_{\mu}^{HVP}[LO] &= (6923 \pm 42) \times 10^{-11} \\ a_{\mu}^{HVP}[HO] &= (-98.4 \pm 0.7) \times 10^{-11} \\ a_{\mu}^{HLbL} &= (105 \pm 26) \times 10^{-11} \end{array}$$

Total SM

$$a_{\mu}^{SM} = (116591828 \pm 50) \times 10^{-11}$$



#### What about the experiments?



g-2 theory **g-2 experiments** The new g-2 experiment (E989) at Fermilab

#### General Principle of the experiments



 Polarized muons are sent to the magnetic storage ring where they orbit and decay to positrons and neutrinos.

AUS

Fermilab

- As spin precesses around the magnetic field as a result decay positrons show modulations in their number.
- Decay positron oscillation is measured.

## How do we polarize muons?

- It's a 2 body decay, neutrinos are left-handed.
- To conserve angular momentum,  $\mu^+$  has to be left-handed too, that is muon-spin directed opposite to its momentum.

Can we measure their spin directions from the decay positrons?



g-2 theory **g-2 experiments** The new g-2 experiment (E989) at Fermilab



 $\nu_{\rm e} \stackrel{\mu^+}{\not\approx} \stackrel{e^+}{\leftarrow}$ 

- 3-body decay,  $\nu_e$ ,  $\bar{\nu}_\mu$  are left, right-handed respectively implying  $e^+$  spin along its momentum.
- Due to parity violation, fast positrons are emitted along the muon spin direction.

 $W(\Theta) \propto [1 + \alpha(E) \cos \Theta]$ 



AUS

**g-2** experiments Fhe new g-2 experiment (E989) at Fermilab



## $\mu^+$ decay: highest energy $e^+$ along $\mu^+$ spin

- Fastest  $e^+$  are along the direction of muon spin.
- Therefore, detecting  $e^+$  with energy  $>{\rm a}$  threshold, means reading the muon spin direction.
- That's why calorimeters are arranged near the beam path and pointed towards the beam.



## How do we measure g-2?

Spin s when put in a magnetic field B, precesses around it with a frequency

$$\omega_s = \frac{eB}{m_\mu} \left( \frac{1}{\gamma} + a_\mu \right)$$

But the muons are also orbiting inside the ring, this cyclotrone frequency is

$$\omega_c = \frac{eB}{m_\mu} \frac{1}{\gamma}$$

Therefore we define the difference as

 $\omega_a$ ,

$$\omega_a = \frac{eB}{m_\mu} a_\mu$$



AUS

## A magic worth mentioning...

To maintain vertical stability an electric field E (quadrupole) is also applied, which makes it a bit more complicated

$$oldsymbol{\omega}_{oldsymbol{a}} = rac{e}{m_{\mu}} \left( a_{\mu} oldsymbol{B} - \left[ a_{\mu} - rac{1}{\gamma^2 - 1} 
ight] oldsymbol{v} imes oldsymbol{E} 
ight)$$

But there's a magic...



AUS

Sermilab



To maintain vertical stability an electric field E (quadrupole) is also applied, which makes it a bit more complicated

$$\boldsymbol{\omega}_{\boldsymbol{a}} = \frac{e}{m_{\mu}} \left( a_{\mu} \boldsymbol{B} - \begin{bmatrix} \underline{a_{\mu}} & 1 \\ \gamma^2 - 1 \end{bmatrix} \boldsymbol{v} \times \boldsymbol{E} \right)$$

But there's a magic...

A clever choice of muon energy (3.1 GeV) or  $\gamma~(\sim 29)$  will result in a cancellation.

This specific momentum of the muon is called "the magic-momentum".



AUS



#### $\omega_a$ and decay positrons...

- $g_{\mu} = 2$  will imply  $a_{\mu} = 0$  that is Larmor and cyclotrone frequencies will match perfectly implying no mis-alignment between the spin and the momentum of the muons.
- Slight mismatch between the two frequencies will show up in the misalignment between muon spin and momentum.
- This misalignment-oscillation will result in oscillation of the fast decay positrons.
- Measuring those decay positrons will mean measurement of  $\omega_a$  hence  $a_{\mu}$ .



Remember muon spin and the decay positron energy are highly correlated!



g-2 theory g-2 experiments The new g-2 experiment (E989) at Fermilab

## The wiggles





g-2 theory g-2 experiments The new g-2 experiment (E989) at Fermilab

## The wiggles





### The wiggles and the $\omega_a$

$$N(E,t) \propto e^{-t/\gamma \tau_{\mu}} \left[1 - A(E,t) \cos(\omega_a t + \phi)\right]$$

- Number of decay positrons N modulates with  $\omega_a$ .
- It also exponentially decays with lifetime  $\gamma \tau_{\mu} \sim 64~\mu {\rm s}.$
- Recalling the equation

$$\omega_a = \frac{eB}{m_\mu} \, a_\mu$$

a measurement of the magnetic field and the muon mass will finish the job.



All we discussed so far are common to most of the old experiments, let's consider the results and the consequences.

The Brookhaven (E821) result (0.54 ppm) is the last and the most exciting one, because

 $(a_{\mu}^{SM} - a_{\mu}^{expt}) \simeq 3.6\sigma$ 

Exciting results!!!



AUS

Sermilab



# There's a 4-5 times more precise experiment going on right now... => an aim of $7\sigma$ SM-experiment discrepancy.

Atanu Nath

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} g^{-2 \ theory} \\ g^{-2 \ experiments} \end{array} & AUS \end{array} \overset{(IVFN)}{\textcircled{}} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline The great move: 5150 \ kilometers, 25^{th} \ June \rightarrow July \ 20^{th}, \ 2013 \end{array}$ 











Muon g-2 and Physics Beyond Standard Model



## Celebration..





## The Fermilab g-2 collaboration





## g-2 @ FNAL: Improvements of systematics over BNL

The new muon g-2 experiment at Fermilab, the E989 is aiming to be 4 times more precise  $(0.14 \ ppm)$  than the BNL  $(0.54 \ ppm)$ , which requires improvements at several fronts.

- Improved statistics:  $21 \times$  BNL statistics.
- Low pion contamination: Pions (3.11 GeV) travels longer ( $\sim 1 \text{ km}$ ) distance => pure muon beam at the end.
- Gain calibration: A laser based calibration system will monitor the changes in the gain during and outside a muon fill and correct for it.
- Low pile-up: A calorimeter is highly segmented (SiPMs collecting light from  $6 \times 9$  PbF2 crystals) hence two hits separated even by 2 *ns* can still be resolved.
- Improved tracker system.
- Extremely uniform and stable magnetic field (knowledge of  $1.45~{\rm T}~B$  field at  $\pm 7~ppb$  level).



## 24 Calorimeters





#### A little bit about the Italian contribution...



#### Short-term gain change

- Huge load during muon-fill in the ring causes the gains of the SiPMs drop significantly  $\sim 10\%$
- Recovery time is typically a few **tens** of  $\mu$ s.





#### Short-term gain change

• We send 3 laser pulses of known intensity during a muon fill.





#### Short-term gain change

- We send 3 laser pulses of known intensity during a muon fill.
- In one of the next fills we shift those laser pulses by 5  $\mu$ s.



Atanu Nath



#### Short-term gain change

- We send 3 laser pulses of known intensity during a muon fill.
- In one of the next fills we shift those laser pulses by 5  $\mu {\rm s.}$
- We continue shifting until we scan the whole "*gain-sagging*" muon fill window.



This way we obtain the "gain-sagging function"  $G^{SiPM}(t)$  of the Silicon photo-multiplier.

$$r_{e^+} = r_{e^+}^{SiPM} \times G^{SiPM}$$

and correct the SiPM response.

#### Long-term gain change

- Gain also varies with temperature, therefore day-night dependence is observed over longer DAQ time.
- We constantly send laser pulses of known intensity outside muon fills all the time to map the long term gain-change.



AUS

Figure: Ratio of known laser signals obtained using two Pin diodes over 60 hours.

This way we obtain the "gain-sagging function"  $G^{SiPM}(t)$  of the Silicon photo-multiplier.

$$r_{e^+} = r_{e^+}^{SiPM} \times G^{SiPM}$$

and correct the SiPM response.



#### The laser calibration system



We are almost at the end... let's discuss the status of the experiment.





#### **Current status and plans**

- We have already achieved the BNL statistics.
- Results with 2× BNL data ( $\sim 0.4 \ ppm$ ) is expected to be published in the beginning of 2019.
- Final 20× BNL data ( $\sim 0.14 \ ppm$ ) is planned for 2021 publication.

If the central value of BNL stands, a SM-experiment discrepancy of  $7\sigma$  is expected!!!



## Thanks



One of the biggest discrepancies in particle physics at the moment is the <u>g-2</u> <u>experiment</u>. It's a measurement of the way the muon behaves in a magnetic field. The experiment shows a significant discrepancy with the Standard Model that's getting more significant with time. It's a low-profile experiment, but it's extremely sensitive to new physics. It's still running, but if I were to put my money on something that would signal new physics, it's the g-2 experiment at Fernilab. I think it's really fascinating.

-Brian Cox



#### Some of the references

- Muon Anomalous Magnetic Moment, PDG
- The anomalous magnetic moment of the muon: a theoretical introduction, Marc Knecht
- The Anomalous Magnetic Moment of the Muon, Friedrich Jegerlehner
- Experimental Prospects on Muon g-2, Mark Lancaster







#### Backups





## Backups

