

Current status of the muon g-2 measurement at Fermilab

Anna Driutti

on behalf of the Muon g-2 Collaboration

Udine University & INFN

The 15th International Workshop on Tau Lepton Physics

24–28 September 2018 Amsterdam The Netherlands

Motivation

Comparison of the measurement to the calculation of $\mathbf{a}_{\mu} = (\mathbf{g}_{\mu} - \mathbf{2})/\mathbf{2}$ allows for a precise test of the Standard Model and to look for new physics.

BNL g – 2 experiment (E821) found a discrepancy > 3σ w.r.t. theoretical prediction.

Fermilab g - 2 experiment (E989) aims for a reduction of the experimental uncertainty by a factor of 4 with respect to BNL result:

 $\delta(a_{\mu})^{\text{exp.}}$: 540 ppb \rightarrow 140 ppb

If a_{μ} value is confirmed (using latest a_{μ}^{SM}), the new g-2 result has the potential to confirm the discrepancy and claim discovery:

$$\mathbf{a}_{\mu}^{\mathrm{FNAL}} - \mathbf{a}_{\mu}^{\mathrm{SM}} {\sim \mathbf{7}\sigma}$$

Experimental Technique

1. Muon production

A. Driutti (U. Udine & INFN)

Final formula

In the final analysis the anomaly is extracted with:

$$a_{\mu} = \frac{\frac{\frac{g_e}{2} \frac{m_{\mu}}{m_e} \frac{\omega_a}{\overline{\omega}_p}}{\frac{\mu_e}{\mu_p}}$$

Get from CODATA^[3]: $g_e = -2.002 319 304 361 82(52) (0.00026 ppb)$ $m_{\mu}/m_e = 206.768 2826(46) (22 ppb)$ $\mu_e/\mu_p = -658.210 6866(20) (3.0 ppb)$ [3] Rev. Mod. Phys. 88, no. 3. 035009 (2016) [arXiv:1507.07956]

- ω_a anomalous spin precession frequency is extracted from decay positron time spectra
- $\overline{\omega}_p$ average magnetic field seen by the muons is measured by NMR
- δa_{μ} is determined by precision of ω_a and ω_p measurements:

δa_{μ}	BNL (ppb)	FNAL goal (ppb)
ω_a statistic	480	100
ω_a systematic	180	70
ω_p systematics	170	70
Total	540	140

A. Driutti (U. Udine & INFN)

Requirements for a 140 ppb measurement

	δa_{μ}	BNL (ppb)	FNAL goal (ppb)	_	
Г	ω_a statistic	480	100		
	ω_a systematic	180	70		
	ω_{p} systematics	170	70]	
	Total	540	140		
L					
 20 × BNL statistics more muons/second, higher quality beam, store more muons, 					
• $3 \times$ more uniform magnetic field and improve the ω_p measurement					
 optimize shimming procedure, precise pNMR probes, 					
• Improve the ω_a measurement					
 new instrumentation: segmented and fast EM calorimeters, higher bit-depth WFDs, laser calibration system, tracker system, 					

Production of the muon beam

- **Recycler Ring:** 8 GeV protons from Booster are rebunched
- Target Station: *p* are collided with target and π⁺ with *p* = 3.1 GeV/*c* (±10%) are collected
- Beam Transfer and Delivery Ring: in decay line magnetic lenses select μ^+ from $\pi^+ \rightarrow \mu^+ \nu_{\mu}$, while in circular ring the μ are separated from p and π^+
- Muon Campus: a beam of μ⁺ polarize is ready to be injected into the storage ring. We expect 20 times BNL statistics!

Journey of the storage ring: from BNL to FNAL

Injection of the Muons in the ring

μ^+ injected first through a air **tunnel** in the iron yoke and then a field-cancelling **Inflector** magnet

Muon Storage

3 magnetic kickers to deflect the beam outward by ~ 10.8 mrad at 90° to put beam onto a centered orbit

Vertical Focusing

4 Sets of Electrostatic Quadrupole plates for vertical focusing

Storage Profile

- ring equipped with two in-vacuum straw tracker detectors.
- trackers used to extrapolate decay e⁺ trajectory back to muon decay position → they provide an image of the store muon beam profile
- final alignment and calibration not yet complete: beam not centred!
- tracker detectors essential for g – 2 systematics and EDM search

Run 1 Statistics

In FY18 collected ~ 2×BNL statistics of raw data (no quality selection):

- *ω_P* is proportional to the magnetic field;
- magnetic field is created as uniform as possible (shimming procedure) and kept mechanically and thermally stable
- during data-taking the field is monitored by fixed NMR probes
- periodically (~ 1 run every days) field is mapped by a trolley that runs around the inside of the ring and calibrates the stationary probes

ω_P Measurement

How we mesure ω_a

Injected polarized muons decay: $\mu^+ \rightarrow e^+ + v_e + v_{\mu}$:

 $\Rightarrow \text{ high energy } e^+ \text{ are emitted preferentially with electron momentum} \\ \text{direction strongly correlated with } \mu^+ \text{ spin (parity violation of the weak} \\ \text{decay)} \\ \text{Number of high energy positrons as a function of time} \\ \end{cases}$

Counting the number of e^+ with $E_{e^+} > E_{\text{threshold}}$ as a function of time (wiggle plot) leads to ω_a :

$$N(t) = N_0 e^{-t/\tau} [1 + A\cos(\omega_a t + \phi)]$$

 E_{e^+} and t are the measured observables.

Detectors for ω_a **Measurement**

 The energy and hit time of the e⁺ from the μ decay are measured by the 24 calorimeters positioned inside the ring.

Calorimeters

- each calorimeter is composed of 6×9 PbF₂ crystals read out individually by large-area SiPMs
- calibration, time alignment and gain stability for each of 1296 channels is provided by the laser calibration system

A. Driutti (U. Udine & INFN)

TAU2018 - Amsterdam, September 27, 2018

Methods to obtain ω_a

- Multiple analysis techniques
- Threshold (T) Method

Asymmetry Method

Integrated Charge (Q) Method Energy-binned Method Ratio (R) Method

- two independent reconstruction routines to turn raw waveforms into energies and times
- results hardware and software blinded

ω_a Analysis Highlights

 Advanced fitting algorithms accounting for systematics

In-fill energy scale stability

T-method: FFT of fit residuals: Big improvements when accounting for CBO, lost muons,...

Pileup events

Beam Hit

Summary and Conclusions

- The experiment just finished the 1st physics data taking: ~ 2×BNL statistics (raw data) has already been collected!
- Measurements of ω_a and ω_p are becoming more mature: goal of publishing in 2019 (~ 400 ppb)!
- The ultimate goal is to measure *a_μ* with a precision of 140 ppb (4×BNL precision).

