

IEEE NSS/MIC 2018

A Digitizer ReAdout Controller (DIRAC) board for the Mu2e Csl electromagnetic calorimeter data acquisition system

Poster Number N-07-101

E. Pedreschi¹, D. Caiulo^{1,3}, G. Corradi², S. Ceravolo², F. Cervelli¹, S. Di Falco¹, S. Donati^{1,3}, L. Morescalchi², F. Spinella¹

¹ INFN - Pisa, ²INFN - LNF, ³ University of Pisa

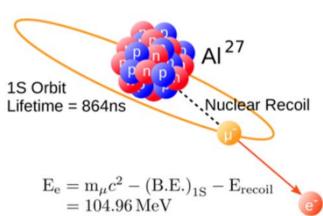
1. Mu2e: Search for $\mu + N \rightarrow e + N$

Mu2e will search for the coherent, neutrinoless muon-to-electron conversion in the field of a nucleus. This charged lepton flavor-violating process allows to probe energy scales up to thousands TeV, far above the existing colliders. If no conversion events are observed in 3 years of running, Mu2e will set a limit on the ratio between the muon conversion and the muon capture rate: R_{ue} <6 x 10⁻¹⁷ (@ 90% C.L.).

Production Solenoid (PS)

An 8 GeV proton beam hits a tungsten target A graded magnetic field reflects muons to the TS

Cosmic Ray Veto (CRV)


4 layers of plastic scintillator bars Covers the entire DS and half of the TS

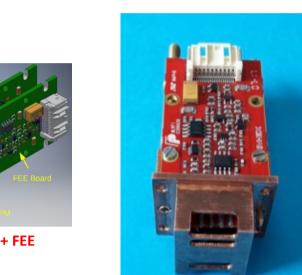
Straw Tracker (TRK)

20,000 low mass straw drift tubes Momentum resolution 180 keV/c @100MeV/c

Electromagnetic Calorimeter (ECAL)

1348 undoped CsI crystals Energy, Time and Position measurements

Experimental Technique

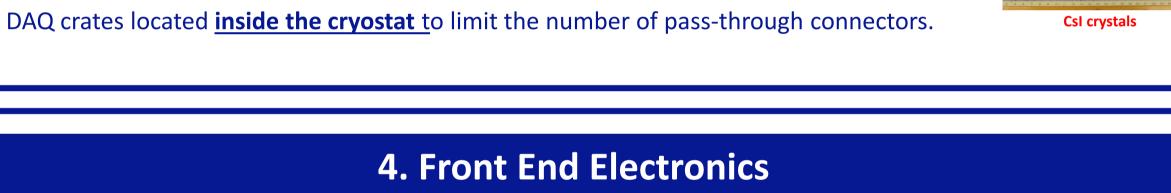

Stop muons in Aluminium target Muons quickly get to 1S orbit Lifetime of muonic atom is 864 ns Look for the 105 MeV conversion electron

4.6 T ON A MANAMA **Detector Solenoid (DS) Transport Solenoid (TS)** Captures muons on the **Aluminium stopping target** Selects **low momentum negative** particles

2. The Electromagnetic Calorimeter

Calorimeter Provides:

- Particle identification μ/e
- Seed for track pattern recognition
- Independent trigger
- \Rightarrow $\triangle E/E < 10\%$ and $\triangle t < 500$ ps
- **⇒** Position resolution of O(1 cm)


 \triangleright 1 crystal coupled to 2 large (14x20 mm²) area UV-extended SiPM \rightarrow 2696 electronic channels

Antiproton absorber at the beginning and

in the mid-section

- > **SiPM** packed in a parallel arrangement of 2 groups of 3 cells biased in series

3. Why a digitizer? What requirements?

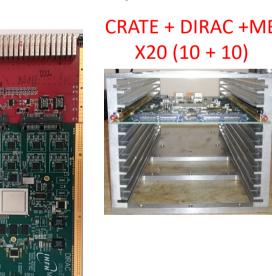
Requirements:

- Very intense particle flux expected in the calorimeter → High Sampling Rate digitizer crucial to resolve pile-up
- Sample SiPM signal at the frequency of **200 Msamples** with **12 bits** ADC

- ❖ Magnetic field of 1 T and 10⁻⁴ Torr vacuum
- ❖ Total Ionizing Dose (TID) 0.5 krad/yr (from simulation)
- Neutron flux $5x10^{10}$ 1 MeV (Si)/yr (from simulation)
- Mechanical constraints:
- ❖ Limited space → 20 ADC channels/board
- ❖ Limited access for maintenance → Highly Reliable Design mandatory

DC-DC converter

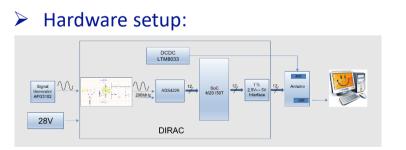
1 T B field and 10⁻⁴ Torr vacuum in the detector zone


Typical 1.7 µs Mu2e event

4. Front End Electronics

- Test pulse
 - FE boards connected to SiPM to provide: Amplification
 - voltage
 - Monitoring of current and temperature
 - Local linear regulation of the bias

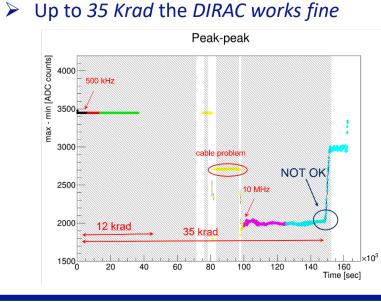
5. Digitizer design

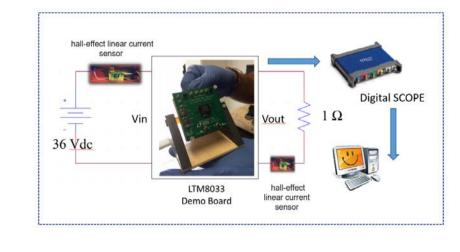

parameter

- > The Harsh Environment and the sampling rate (200) Msamples) → severe limitations on the components choice \geq \approx 3,000 digitized channels \rightarrow the cost is an important
- After an intense campaign of tests, our choice:
- <u>ADC</u> → Texas instruments ADS4229
- <u>DCDC</u> converter → Linear Technologies LTM8033
- FPGA (SoC) → Microsemi SmartFusion 2 SM2150T
- <u>Fiber transceiver</u> → Cotsworks RJ-5G-SX

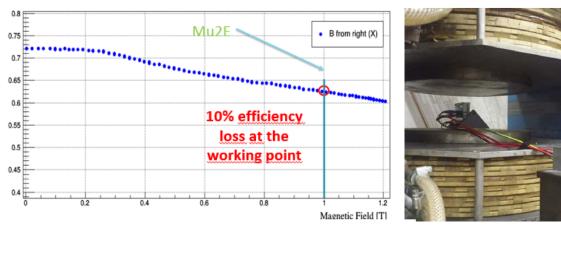
6. DIRAC radiation test and magnetic field compatibility

DIRAC test @ ENEA Casaccia Research Center


➤ DIRAC → sampling, processing and transmission to the Mu2e DAQ


distributed by an ARM controller

- → Y irradiation (Co⁶⁰)
- ightharpoonup Test Start ightharpoonup June 13 @ 1.30 PM
- ightharpoonup Test Stop \rightarrow June 15 @ 9.20 AM
- ➤ Dose requested \rightarrow 1Krad/ h \rightarrow TID \approx 41 krad

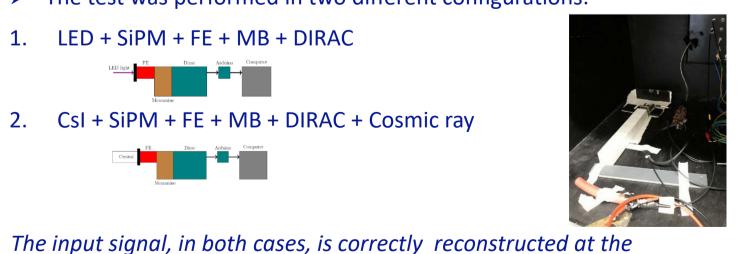


- DC-DC Converter Test @ INFN Lasa Laboratory
- ➤ Magnetic Field Compatibility → LTM8033 tested in a strong Magnetic field
- > The hardware setup was the same used for radiations tests to monitor convertion efficiency

DCDC test: measure input/output voltages to monitor conversion efficiency and output voltage in all the 3 axes

No significant difference between axes

Linear Regulator


- All components must be qualified for Radiation Tolerance The DCDC converter must also be tested for operation in 1 T magnetic field
- Microsemi SmartFusion2 already qualified for radiation by the producer, but the ADC is read out through a DDR bus, so it must be operated at 400 MHz, which is near the maximum allowed for the device. Compatibility between the SoC and the ADC must be tested.

7. Slice test → full chain 1 channel

> The test was performed in two different configurations:

2. CsI + SiPM + FE + MB + DIRAC + Cosmic ray

1. LED + SiPM + FE + MB + DIRAC

LED + SiPM + FE + MB + DIRAC Readout signal 200 MHz 12 bit

CsI + SiPM + FE + MB + DIRAC + Cosmic ray Readout signal 200 MHz 12 bit

8. Conclusions

Mu2e DIRAC board conceptually defined and designed

output

- > All relevant components chosen and tested both under radiation and magnetic field, with good results
- Compatibility between Microsemi SoC and ADC (ADS4229) demonstrated
- > First digitizer prototype constructed, tested for radiation and one channel full chain successfully tested
- > New prototype radiation tolerance tests planned at Helmholtz Zentrum Dresden Rossendorf in 2019, stay tuned.

This work was supported by the US Department of Energy; the Italian Istituto Nazionale di Fisica Nucleare; the US National Science Foundation; the Ministry of Education and Science of the Russian Federation; the Thousand Talents Plan of China; the Helmholtz Association of Germany; and the EU Horizon 2020 Research and Innovation Program under the Marie Sklodowska-Curie Grant Agreement No.690385 and 734303. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the US Department of Energy.