

L'esperimento g-2

Carlo Gabbanini INO-CNR e INFN sez. Pisa

per la collaborazione g-2

Moto di particella con spin in campo magnetico

$$\omega_S = \frac{geB}{2mc} + (1 - \gamma)\frac{eB}{\gamma mc} \qquad \qquad \omega_C = \frac{eB}{mc\gamma}$$

La frequenza di **Spin** relative alla frequenza di **Ciclotrone** è la "frequenza di precessione anomala" ω_a Non dipende da γ ! Proportionale a g - 2 e *B* !

🛟 Fermilab

$$\omega_a = \omega_S - \omega_C$$
$$= \left(\frac{g-2}{2}\right) \frac{eB}{mc} = a \frac{eB}{mc}$$

Measurement of Muon g-2

Determine difference between spin precession and cyclotron motion for a muon moving in a magnetic field:

🛠 Fermilab

Muon g-2 experiment at FNAL

- Improved measurement of the μ anomalous magnetic moment: $a_{\mu} = (g_{\mu}-2)/2$
- Best previous measurement BNL-E821 (1997-2001)
 0.54 ppm

$$a_{\mu}^{exp} = (11659208.9(5.4)_{stat}(3.3)_{syst}(6.3)_{tot}) \times 10^{-10}$$

G. W. Bennett et al.,
PRL 92, 161802 (2004).
L. Roberts, Chinese Phys. C
34, 741 (2010).

- Error statistics limited
- Difference wrt. SM ~ 3σ (theory error ~ 5 x 10⁻¹⁰)
- $a_{\mu}(SM) = a_{\mu}(QED) + a_{\mu}(Weak) + a_{\mu}(HVP) + a_{\mu}(Had HO) + a_{\mu}(HLbL)$
- Goal of new FNAL experiment (E989) (x4 better)

- σ_{tot} = (1.2 stat. ⊕ 1.3 syst.) x 10⁻¹⁰ = 1.6 x 10⁻¹⁰

Assuming same central values (exp. & theory):
 exp. Difference - SM: ~ 5 (7) σ if no (x2) improvement in theoretical determination

😤 Fermilab

 a_{μ} (New Physics) $\equiv a_{\mu}$ (Expt) – a_{μ} (SM)

- Reduce the experimental error bar in a_{μ} by a factor 4
- Resolve the long-standing E821 g-2 discrepancy

 $\delta\omega_{a}$ (statistics) at 100 ppb level \sim 1.5 x 10¹¹ events in the final fit Multiple independent blind analyses Multiple sorting and fitting methods Net Systematics error to 100 ppb (x 3 improvement) Leading issues Pileup Gain (energy scale) stability Muon losses

The Big Move of the Ring (2013)

Storing muons

$$\omega_a = \omega_S - \omega_C = \left(\frac{g-2}{2}\right) \frac{eB}{mc} = a \frac{eB}{mc}$$

Si può scrivere come:

$$a_{\mu} = \frac{\omega_a/\omega_p}{\lambda - \omega_a/\omega_p}$$

rapporto di frequenze

 $\lambda = \mu_{\mu}/\mu_{p}$ da struttura iperfine del muonio 120 ppb

Two "blinded" frequency measurements are made. The ratio gives $a_{\mu} \equiv (g-2)/2$

How do we get each of these?

Fermilab

«wiggle plot»

How it works: ω_a

- Inject polarized muons into the ring
- Observe decay electrons
 - Count electrons above energy threshold (1.9 GeV optimal)

Figure 2: Distribution of electron counts versus time for 3.6 billion muon decays from the E821 experiment. The data are wrapped around modulo $100 \,\mu s$ [9].

 $N(t) = N_0 e^{-\frac{t}{\gamma\tau}} \left[1 + A\cos(\omega_a t + \phi)\right]$

‡ Fermilab

Istituto Nazionale di Fisica Nucleare

How it works: muon distribution

Trackers are used to determine beam position vs time

🛟 Fermilab

- B measured with NMR probes (precision ~10 ppb)→
 - $-\omega_p$ = free proton precession frequency \propto B

- Probes in several fixed positions and on trolley that can move around the ring
 - What matters is average field around ring
 - Max deviation 15 ppm demonstrated in ring section with laminations

- Regularly map field inside vacuum chamber with NMR probe trolley
- Monitor field during datataking with fixed probes and interpolate
- Shimming trolley contains array of probes that map whole storage volume
- Field in storage volume is measured using pulsed proton NMR (<10ppB single shot precision)

- BNL E821:
 - 1 ppm (azimuth average)
 - 100 ppm (local variations)
- FNAL E989:

Fermilab

- 1 ppm (azimuth average)
- 50 ppm (local variations)

The detectors for ω_{a} : calorimeters

Energy and time of positrons is measured with 24 calorimeters, each one segmented in 54 channels. Each PbF₂ crystal is read out by a Silicon Photomultiplier (SiPM)

The detectors for ω_a : calorimeters

μ

a

Systematic Errors on ω_a

Improving ω _a												
E821 Error	Size	Plan for the New $g-2$ Experiment	Goal									
	[ppm]		[ppm]									
Gain changes	0.12	Better laser calibration and low-energy threshold	0.02									
Lost muons	0.09	Long beamline eliminates non-standard muons	0.02									
Pileup	0.08	Low-energy samples recorded; calorimeter segmentation	0.04									
CBO	0.07	New scraping scheme; damping scheme implemented	0.04									
${\cal E}$ and pitch	0.05	Improved measurement with traceback	0.03									
Total	0.18	Quadrature sum	0.07									

‡ Fermilab

Muon (g-2) Technical Design Report arXiv:1501.06858

Idea:

• Send trains of laser pulses on known intensity synchronously on all calorimeters' channels (1296)

Goals:

- Absolute calibration of the SiPMs response (photoelectrons/photons response)
- Provide **short term** (in fill, gain saturation) and **long term** (bias and temperature variations) calibration of the of the SiPM gain function
- provide additional synchronization signals

The laser calibration system

The laser System

Laser diodes @405nm, 600ps, 1nJ/pulse, 0-40 MHz rep. rate

The laser calibration system

GAIN stability established to ~few x 10⁻⁴

State-of-the-art Laser-based calibration system

‡ Fermilab

Conclusioni

- L'esperimento g-2 è in fase di presa dati a Fermilab da un mese circa
- Le varie componenti dell'esperimento funzionano come da previsione, tranne flusso muoni (1/6 del TDR)
- Primo risultato (1xBNL o 2xBNL) atteso fine luglio
- Risultato finale (21xBNL) atteso per fine 2019 / 2020

E989 Scientific collaboration

		•			_
					_
					_
					_
					_
-					
r					

Domestic Universities – Boston

- Cornell
- Illinois
- James Madison
- Kentucky
- Massachusetts
- Michigan
- Michigan State
- Mississippi
- Northern Illinois
- Regis
- UT Austin
- Virginia
- Washington
- National Labs
 - Argonne
 - Brookhaven
 - Fermilab

- Molise
- Naples
- Pisa
- Roma 2
- Trieste
- Udine

China

– Shanghai

Germany

– Dresden

England

- Lancaster
- Liverpool
- University College London

Korea

- CAPP/IBS
- KAIST

Russia

- JINR/Dubna
- Novosibirsk

‡ Fermilab

Grazie per l'attenzione

SPARE

Istituto Nazionale di Fisica Nucleare

An Electric field is necessary for vertical focusing of the beam so:

$$\overrightarrow{\omega_a} = -\frac{e}{m} \Big[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} \Big]$$

The extra term is zero for $\gamma = 29,3$ ($P_{\mu} = 3.09$ GeV/c)

Creating the Muon Beam for g-2

- 8 GeV p batch into Recycler
- Split into 4 bunches
- Extract 1 by 1 to strike target
- Long FODO channel to collect $\pi \rightarrow \mu v$
- p/ π/μ beam enters DR; protons kicked out; π decay away
- μ enter storage ring

Analyzing the muon spin

- Parity violation in muon decay → highest energy decay positron emitted opposite of muon spin
- When spin is aligned/anti-al. with momentum, the boost subtracts/adds, and the decay positron energy is reduced/increased in the lab frame
- This results in a modulation of the energy spectrum at the ω_a frequency

What makes the "wiggle" ?

(1) Polarized muons
 ~ 97% polarized for forward decays

- (2) Precession proportional to (g-2)
- (3) P_{μ} magic momentum = 3.094 GeV/c No *E* effect on precession when γ = 29.3

(4) Parity violation in the decay gives average spin direction. The number of higher energy positrons is modulated at ω_a

In-vacuum Straw Tracker determines Muon Distribution needed for the "~" in ω_p formula

Aux detectors: harps and counters

Fiber Harps

2 locations, 2 axis

- used to monitor the muon beam entrance position and angle during commissioning
- measures betatron oscillations during run

Entrance counters

outside the inflector

- gives relative intensity of fill
- timing of the fill (resolution << 150ns, cyclotron period)

Measuring the Field, ω_p

• Systematic error total ω_p budget:

[from 170 ppb **→ 70 ppb**]

• The recipe:

- 1. Make a highly uniform dipole field
- 2. Install NMR probes "everywhere" to monitor its stability
- 3. Build a NMR "trolley" map the field in the vacuum region where the muons will be stored
- 4. Build a system of "absolute" magnetic field measuring special probes that can cross calibrate the many used in the fixed and trolley locations
- 5. Don't make any mistakes
- 6. Figure out where the muons were storing and calculate the average integrated field they experiences.

A 25-element pNMR *Trolley* maps the field during shimming

Free Induction Decay (FID) Waveforms

Extracted frequency precision is ~10 ppb per FID

The magnetic field

Active shims

0.5

-4 -3 -2 -1 0 1

- Many passive and active shimming tools to achieve unprecedented field homogeneity for such a large volume.
- Each "knob" adjusts nearly orthogonal components of the field shape

FNAL goal is x2 improvement in homogeneity

Passive shims

Iron wedges

Iron pole bumps

Pole tilt

