

Mu2e calorimeter readout system

L. Baldini¹, D. Caiulo^{1,2}, F. Cei¹, F. D'Errico¹, S. Di Falco², S. Donati^{1,2}, S. Faetti¹, S. Giudici¹, L. Lazzeri¹, L. Morescalchi², D. Nicolò¹, E. Pedreschi^{1,2}, G. Pezzullo³, G. Polacco¹, M. Sozzi¹, F. Spinella¹

¹University of Pisa, ²INFN - Pisa, ³Yale University

1. Mu2e: Search for $\mu + N \rightarrow e + N$

Mu2e will search for the coherent, neutrinoless muon-to-electron conversion in the field of a nucleus. This charged lepton flavor-violating process allows to probe energy scales up to thousands TeV, far above the existing colliders. If no conversion events are observed in 3 years of running, Mu2e will set a limit on the ratio between the muon conversion and the muon capture rate: R_{ue} <6 x 10⁻¹⁷ (@ 90% C.L.).

2. The Electromagnetic Calorimeter

High granularity crystal calorimeter made of 1348 undoped CsI crystals (3.4x3.4x20 cm³). Crystals arranged in two disks (inner/outer radius 37.4 cm / 66 cm, separation between disks 75 cm).

3. Why a digitizer ? Which requirements ?

Requirements:

NFN

1 crystal coupled to 2 large (14x20 mm²) area UV-extended SiPM (total of 2696 electronic channels). SiPM packed in a parallel arrangement of 2 groups of 3 cells biased in series.

Calorimeter Provides:

- Particle identification μ/e
- Seed for track pattern recognition
- Independent trigger
- $\Rightarrow \Delta E/E < 10\%$ and $\Delta t < 500$ ps
- \Rightarrow Position resolution of O(1 cm)

DAQ crates located **inside the cryostat** to limit the number of pass-through connectors.

CsI crystals

- Very intense particle flux expected in the calorimeter \rightarrow high sampling rate digitizer crucial to resolve pile-up
- Sample SiPM signal at the frequency of 200 Msamples with 12 bits ADC
- System located inside the cryostat \rightarrow harsh environment: - Magnetic field of 1 T and 10⁻⁴ Torr vacuum - Total Ionizing Dose (TID) 0.5 krad/yr (from simulation)

- Neutron flux 5x10¹⁰ 1 MeV (Si)/yr (from simulation)

- **Mechanical constraints:**
 - Limited space: 20 ADC channels/board
 - Limited access for maintenance: highly reliable design mandatory

Typical 1.7 µs Mu2e event

4. Front End Electronics

and HV distributed by an ARM controller.

FE boards connected to SiPM to provide:

- Amplification
- Local linear regulation of the bias voltage
- Monitoring of current and temperature
- Test pulse

5. Digitizer design

The working environment of the digitizer and the sampling rate (200 Msamples) put severe limitations on the components choice. Also the cost is an important parameter (~3,000 digitized channels).

After an intense campaign of tests, our choice:

- ADC : Texas instruments ADS4229
- DCDC converter: Linear Technologies LTM8033
- FPGA (SoC): Microsemi SmartFusion 2 SM2150T
- Fiber transceiver: Cotsworks RJ-5G-SX
- All components must be qualified for radiation tolerance and the DCDC converter must also be tested for operation in 1 T magnetic field.
- Microsemi SmartFusion2 already qualified for radiation by the producer, but the ADC is read out through a DDR bus, so it must be operated at 400 MHz, which is near the maximum allowed for the device. Compatibility between the SoC and the ADC must be tested.

6. ADC & DCDC radiation tolerance

- ADC and DCDC converter tested with neutrons and gamma rays.
- Neutron irradiation performed at the ENEA Frascati Neutron Generator (fluence ~ 10¹¹ neutrons 1 MeV eq (Si)/cm²)
- Gamma irradiation performed at the ENEA Calliope facility (Co⁶⁰, TID 20 krad).

- ADC test: digitize 200 kHz sinusoidal signal and convert it back to analog (automatic comparison between input/output signal with a scope)

Analyzed more than 300 GB of data from neutron and TID tests, no evidence of bit flips or waveforms shape variation.

- DCDC test: measure input/output voltages and currents, monitor conversion efficiency and output voltage

7. DCDC magnetic field compatibility

- DCDC converter tested in a magnetic field up to 1.5 T at the INFN Lasa laboratory
- Used the same setup developed for radiation tests to monitor conversion efficiency and output voltage in all the 3 axes (no significant difference between axes)

8. Conclusions

- Mu2e waveform digitizer conceptually defined and designed
- All relevant components chosen and tested individually both under radiation and magnetic field, with good results
- Compatibility between Microsemi SoC and ADC (ADS4229) demonstrated
- First digitizer prototype constructed: tests progressing smoothly
- New prototype radiation tolerance tests planned at Helmholtz Zentrum Dresden Rossendorf in June 2018

This work was supported by the US Department of Energy; the Italian Istituto Nazionale di Fisica Nucleare; the US National Science Foundation; the Ministry of Education and Science of the Russian Federation; the Thousand Talents Plan of China; the Helmholtz Association of Germany; and the EU Horizon 2020 Research and Innovation Program under the Marie Sklodowska-Curie Grant Agreement No.690385 and 734303. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the US Department of Energy.

contact email: davide.caiulo@pi.infn.it