

Status of the muon g-2 at FNAL (E989)

M. lacovacci University «Federico II» and INFN- Naples On behalf of the g-2 Coll.

> MWPF 2017, October 22-27 Puerto Vallarte, Mexico

Muon g-2 experiment at Fermilab.

Outline: Why, How and When

- Motivations for a number
- Status on g-2
- Introduction to the experimental technique
 - spin equations
 - magic g
- E989 goals and improvements
- What's done and what's going on
- First muons
- Schedule of E989
- Conclusions

Muon magnetic moment

 \rightarrow Hint for BSM Physics

.. as of things on experimental side

FCCP 2017

Daisuke Nomura

	2011		2017	*to be discussed
QED	11658471.81 (0.02)	\rightarrow	11658471.90 (0.01) [F	² hys. Rev. Lett. 109 (2012) 111806]
EW	15.40 (0.20)	\rightarrow	15.36 (0.10) p	Phys. Rav. D 88 (2013) 053006]
LO HLbL	10.50 (2.60)	\rightarrow	9.80 (2.60)	EPJ Web Corif. 118 (2016) 01016]*
NLO HLbL			0.30 (0.20) p	⁹ hys. Letz. B 735 (2014) 90] [‡]
	HLMNT11		<u>KNT17</u>	Davier et al (2017)
LO HVP	694.91 (4.27)	\rightarrow	692.23 (2.54) 1	this work * 693.1 (3.4
NLO HVP	-9.84 (0.07)	\rightarrow	-9.83 (0.04) t	this work*
NNLO HVP			1.24 (0.01) p	Phys. Latz. B 734 (2014) 144] *
Theory total	11659182.80 (4.94)	\rightarrow	11659181.00 (3.62) t	this work
Experiment			11659209.10 (6.33)	world avg
Exp - Theory	26.1 (8.0)	\rightarrow	28.1 (7.3)	this work
Δa_{μ}	3.3σ	\rightarrow	3.9 σ	this work

46

Mile stones for g-2 measurement

$$\pi^- \rightarrow \mu^- + \overline{\nu}_{\mu}$$

Pion Decay : $\pi^- \rightarrow \mu^- + \text{anti } \nu_{\mu}$ (99.98%). In reference frame of π 's CM, muon and neutrino in opposite directions. As elicity(anti ν_{μ})= +1 and π 's spin is 0 $\rightarrow \text{spin}_{\mu} e p_{\mu}$ are parallel ovvero elicity(μ^-)= +1 $\rightarrow \mu$ polarized For m_µ=0 allowed only elicità(μ^-)= -1, m_µ not zero allows elicity(μ^-)= +1. From kinematic $\pi \rightarrow e$ + anti ν_e is favored, instead only (~ 2.5 10⁻⁵) (phase space spazio). If m_µ=m_e=0, π stable.

$$\mu^- \to e^- + \overline{\nu}_e + \nu_\mu$$

Muon decay is three bodies decay

 $\mu^- \rightarrow e^-$ + anti ν_e + ν_{μ}

In CM, p_e^{max} of electron is for per neutrinos parallel and both in opposite direction to p.

For neutrino with 0 mass we have elicity(v_{μ})= -1 and elicity(anti v_e)= +1.

- \rightarrow Total Spin of neutrinos (antiaparallel) is 0 for p_e^{max} .
- \rightarrow Electron Spin coincide with μ spin
- \rightarrow Therefore :
- a) electron spin along p_e^{max} : forbiden as $m_e=0$ (elicità(e-)= -
 - 1), instead here +1! Actually strongly suppressed with respect to case b)
- b) (elicity(e-)= -1) is favored. Only possibility for $\rm m_e{=}0$

→ In Lab frame, electron with high p (energy) goes // to $spin_{\mu}$

Motion in a Magnetic Field

Particle: q = Qe moving in a magnetic field: momentum turns with cyclotron frequency ω_{c} , spin turns with ω_{s} $\omega_{C} = -\frac{QeB}{m\gamma}$; $\omega_{S} = -g\frac{QeB}{2m} - (1 - \gamma)\frac{QeB}{\gamma m}$

Spin turns relative to the momentum with ω_a

$$\omega_a = \omega_S - \omega_C = -\left(\frac{g-2}{2}\right)\frac{QeB}{m} = \underbrace{a}_m^{QeB}$$

In a storage ring, with vert. focusing (E)

With an electric quadrupole field for vertical focusing and the magic γ

Π

$$\vec{\omega}_{a} = -\frac{Qe}{m} \left[d\vec{B} - \left(a - \frac{1}{\sqrt{2} - 1} \right) \vec{B} \times \vec{E} \right]$$

$$\gamma_{m} = 29.3, \quad p_{m} = 3.09 \text{ GeV/c}$$

$$\vec{P} \text{ Measure two quantities}$$

where **B** is expressed in terms of the
Larmor frequency of a free proton ω_{p}

Experimental Technique

E821 arrival-time spectrum $f(t) \simeq N_0 e^{-\lambda t} [1 + A \cos \omega_a t + \phi)]$ $4 \times 10^9 e^{-}, E_{e^-} \ge 1.8 \text{ GeV}$

Setting the energy threshold

- Polarized muons born from pion decay
- The highest energy positrons are correlated with the muon spin.
- As the spin rotates forward and backward the number of ${\rm e^+}$ is modulated by $\omega_{\rm a}$

In 2004 Fermilab hosted a proton driver workshop

- We had a muon working group, where the usual cast of characters appeared. John Ellis was our theory leader
- We quickly realized that the Fermilab complex could provide the perfect beam to a new g-2 experiment, but only if the Tevatron was not operational.
- I think the physics conclusions that the muon group presented are certainly interesting and relevant now, and show why <u>this</u> meeting is so very important.

In the meantime, magnet goes from Long Island to Chicago

Moving 50 ft diameter AI rings without flexing by >1/8"...

Closing two interstates in Chicago...

into Fermilab property at 4:07 a.m. on July 26, 2013

E (11) IN E # 1

The (new) muon g-2 experiment at Fermilab (E989)

Goal

- A factor of 4 reduction in total error in a_{μ} over BNL (0.54 ppm) $a_{\mu}^{exp} = 116592080(54)_{st}(33)_{sy}(63)_{tot} \times 10^{-11}$ ± 0.54 ppm total error
- Two things to notice:
 - statistical error dominates
 - systematic error is only 2.5 to 3 times larger than E989 goal
- How to improve:
 - get a hotter beam (Fermilab) (21 × statistics of BNL)
 - improve everything in systematics, which have many contributing factors
- Fermilab Goal: Equal statistical and systematic errors
 - ± 70 ppb for ω_a and ω_p . total: ± 100 ppb
 - ± 100 ppb for statistics
 - Total error 140 ppb (0.14 ppm)

What has been done ...

- 4 Major Steps
 - Transport BNL storage ring and associated equipment to Fermilab
 - Construct a new experimental hall to house the storage ring
 - Modify anti-proton complex to provide a high-purity, intense beam of 3.094 GeV/c muons
 - Upgrade various subsystems (injection devices, field monitoring, detectors & DAQ) to meet requirements for rates and systematics

Fermilab Muon Campus Vision, circa 2012

 Convert FNAL anti-proton source to produce customized muon beams for experiments like Muon g-2 and Mu2e

Muon Campus Reality – View from Wilson Hall Today

- Muon g-2 hall complete, BNL storage ring installed and operational
- Mu2e civil construction complete, building outfitting underway
- Conversion of accelerator complex to muon source nearing completion

Putting the storage ring back together again (July 2014 – June 2015)

June 2015: Cool down has begun! Magnet Powered on June 25th 2016

Pure beam of muon of 3.1 GeV

Machine Plan: first muons on June 2017

Start of data taking autumn 2017

$\omega_{p}(B)$ systematics

Category	E821	Main E989 Improvement Plans	Goal
	[ppb]		[ppb]
Absolute field calibration	50	Improved T stability and monitoring, precision tests in MRI	35
		solenoid with thermal enclosure, new improved calibration probes	
Trolley probe calibrations	90	3-axis motion of plunging probe, higher accuracy position de- termination by physical stops/optical methods, more frequent calibration, smaller field gradients, smaller abs cal probe to calibrate all trolley probes	30
Trolley measurements of B_0	50	Reduced/measured rail irregularities; reduced position uncer- tainty by factor of 2; stabilized magnet field during measure- ments; smaller field gradients	30
Fixed probe interpolation	70	Better temp. stability of the magnet, more frequent trolley runs, more fixed probes	30
Muon distribution	30	Improved field uniformity, improved muon tracking	10
External fields	-	Measure external fields; active feedback	5
Others †	100	Improved trolley power supply; calibrate and reduce temper-	30
		ature effects on trolley; measure kicker field transients, measure/reduce O_2 and image effects	
Total syst. unc. on ω_p	170		70

- Need to know the average field observed by a muon in the storage ring absolutely to better than 70 ppb, many hardware improvements
- Very challenging...first major step is making the field as uniform as possible
 - Has been our main thrust over the last 9 months

- Field started out with a peak variation of 1400 ppm
- June 2016 peak to peak variation was reduced to 200 ppm
- The goal of shimming is 50 ppm with a muon weighted systematic uncertainty of 70 ppb
- BNL achieved 100 ppm with an averaged field uniformity of +- 1ppm. They estimated their systematic uncertainty of 140 ppb. We would like to improve of a factor 2!

ω_{a} systematics

Category	E821	E989 Improvement Plans	Goal
2004 .45	[ppb]		[ppb]
Gain changes	120	Better laser calibration	
		low-energy threshold	20
Pileup	80	Low-energy samples recorded	
		calorimeter segmentation	40
Lost muons	90	Better collimation in ring	20
CBO	70	Higher n value (frequency)	
		Better match of beamline to ring	< 30
E and pitch	50	Improved tracker	
82		Precise storage ring simulations	30
Total	180	Quadrature sum	70

• Tackling each of the major systematic errors with knowledge gained from BNL E821

C. Polly's talk @ ICHEP 2016

New detector systems to be installed by March 2017

- Calorimeters 24 6x9 PbF2 crystal arrays with SiPM readout, segmentation to reduce pileup
- New electronics and DAQ, 800MHz WFDs and a greatly reduced threshold
- Three 1500 channel straw trackers to precisely monitor properties of stored muon beam via tracking of Michel decay positrons, significant UK contributions
- New laser calibration system from INFN crucial for untangling gain from other systematics

Top view of 1 of 12 vacuum chambers

Aim of the Laser Calibration system

- Main goal: stability monitor
- Monitor short term calorimeter gain fluctuations at the 10⁻⁴ level both during spills (in-fill) & between spills.

Also, to:

- Test/calibrate the calorimeters.
- In "Flight simulator mode" the experiment can be simulated
- Provide a time reference for the DAQ
- Pile-up studies

Mapping the short-term (700 mic. s) gain

The Laser Calibration System

Monitoring Electronics: (Source & Local M.)

۲

- LASER CONTROL
 - FANOUT
- 5 MS
- SM 2
- SM 4
- SM 3
- SM 2
- SM 1
- CONTROLLER

Laser Control Board: "flight simulator "

Laser control board used to simulate (g-2) fill (with no wiggles)

TELEDYM

First fill – May 23, 2017 commissioning run

3

Beam/magnet Detector/DAQ performance:

- **Beam**: good success with FY17 commissioning run
 - Accomplished all pre-shutdown goals
 - Delivered ~3 billion muons to storage ring
 - Have a plan for repairs and improvements during shutdown
- Magnet: at 5280A up most of the time with no problems
- Inflector: some instabilities and trips due to cooling problems
- Quadrupoles: sparkling mostly due to not perfect vacuum (10⁻⁶ torr, expected 2x10⁻⁷ torr)

- Calorimeters: The uptime was 100 % since day 0. Used to measured initial splash, "CBO", launch, for protons and spin precession, distribution of decay vertices, and losses for muons
- **Tracker**: mostly worked with only 1 HV trip in the commissioning run
- Aux Detectors (IBMS, Fiber harps) mostly working and very useful for beam diagnostic
- Readout Electronics: stable throughout runs
- **DAQ** and online monitoring performed well
- Offline production: Data reconstructed almost online (~4 hours delay). ~20 TB of data were reconstructed in 4 days.

June 2017: first muons at FNAL

news INFN of June 2nd: In USA a caccia dell'anomalia del muone

This figure was accumulated from two weeks of data accumulated in June 2017 and has approximately 700k positrons. The number of wiggles is somewhere between that achieved by CERN-II and CERN-III.

10 160 180 200 220 120 140 Spatial distribution of calorimeter clusters from June 2017 data recorded in the calorimeter.

2000

0 3000 energy [MeV]

10

1

2500

first positron tracks at FNAL

One of the first tracks recorded by the tracker showing the hits from a single charged particle (likely a proton) through the straw trackers and the (wire)-track fit and the magic radius

Hits from a single charged particle (likely a proton) through the straw trackers and the (wire)-track fit

Momentum of tracks (there are approx 250k tracks in this plot)

magnets Currents in

The currents in the storage ring magnet and inflector magnet for the first month of the June 2017 commissioning run

SM 0002

45

Cross check of Source e Local Monitor

- Stability is qualified by the two PiD signals in the SM – PIN1/PIN2. The comparison between ADC14 bits digitization and WDF (800 MHz/12 bit) shows capability of stability monitoring at ≤10⁻⁴
- Ratio of the two signals (PMT) of the LM. Within the uncertainty of the laser fluctuations and statistics of the photons no instability can be seen

Project Timeline

Conclusions

- E989 is on schedule
- First runs in June-July 2017 very successfull
- Coming future very appealing:

- First Physics results expected by spring/ summer 2018
- Then Data Taking will go on for 2 years

o Workshop on "Flavour changing and conserving processes" 2015 (FCCP2015)

10-12 September 2015 Villa Orlandi, Anacapri, Capri Island, Italy Europe/Rome timezone

-		
6 33.0	OPUN	C147
UV.	ei vi	ew
_		_

Scientific Programme

Timetable

Organizers

Contribution List

Author index

Registration

Registration Form

List of registrants

Travel Information

Accommodation and fee

Social Programme

The workshop aims to discuss the status and prospects of the physics of "Flavour changing and conserving processes" and addresses the scientific community involved in experiments like g-2, mu2e, meg, meee, EDM and more generally to the physics of K and B mesons. It wants to be a "thinking effort" on the outlook, both theoretical and experimental, as well as a picture of the "state of art". Specifically aims to gather expertise gained in Italy on SM contributions to the g-2 of the muon and related subjects.

Dates:	from 10 September 2015 08:00 to 12 September 2015 13:00
Timezone:	Europe/Rome
Location:	Villa Orlandi, Anacapri, Capri Island, Italy
	International Centre for Scientific Culture - University of Napoli Federico II

First Workshop of the Muon g-2 Theory Initiative

3-6 June 2017 Q Center US/Central timezone

66 registered participants, 40 talks, 15 discussion sessions (525 minutes)

Search

Travel Information Accommodation and fee

Workshop on "Flavour changing and conserving processes" 2017 (FCCP2017)

7-9 September 2017 Villa Orlandi, Anacapri, Capri Island, Italy

Overview	The worksh changing a	op aims to discuss the status and prospects of the physics of "Flavour nd conserving processes" and addresses the scientific community involved in	
Timetable	experiments like g-2, mu2e, meg, meee, EDM and more generally to the physics of K and B mesons. It wants to be a "thinking effort" on the outlook, both theoretical and experimental, as well as a picture of the "state of art". Specifically aims to gather expertise gained in Italy on SM contributions to the g-2 of the muon and related subjects.		
Organizing committee			
Local Organizing Committee			
Contribution List			
Author index	Dates:	from 07 September 2017 08:00 to 09 September 2017 16:30	
	Timezone:	Europe/Rome	
Registration	Location:	Villa Orlandi, Anacapri, Capri Island, Italy	
Registration Form	The second second	International Centre for Scientific Culture - University of Napoli Federico II	
List of registrants	Additional info:	Contacts For any information or question please contact the Local Organizing Committee at: loc_fccp2017@lists.na.infn.it	

Thanks