

## The Calibration System For The Muon g-2 Experiment @ *Fermilab*

Atanu Nath (On behalf of the g-2 collaboration) *INFN – Sezione di Napoli* 13<sup>th</sup> September 2017







### Overview...

- ▶ g-2 and the experiments...
- Why **LASER** Calibration System ?
- Structure and components of the *calibration system*.
- Source Monitors in details
- > Naples' DAQ : On-line and Off-line Monitoring
- Performance and stability

### g-2 and the experiments...

### **Theoretical Status**



# g-2 Experiment @ BNL



### Earlier Experimental Results

|                                                                           | Experiment Year Polarity $a_{\mu} \times 10^{10}$ |             | Pre. [ppppn    | n                                        |                           |             |
|---------------------------------------------------------------------------|---------------------------------------------------|-------------|----------------|------------------------------------------|---------------------------|-------------|
|                                                                           | CERN I                                            | 1961        | $\mu^+$        | 11450000(220000)                         | 4300                      |             |
|                                                                           | CERN II                                           | 1962-1968   | $\mu^+$        | 11661600(3100)                           | 270                       |             |
|                                                                           | CERN III                                          | 1974-1976   | $\mu^+$        | 11659100(110)                            | 10                        |             |
|                                                                           | CERN III                                          | 1975-1976   | $\mu^{-}$      | 11659360(120)                            | 10                        |             |
|                                                                           | BNL                                               | 1997        | $\mu^+$        | 11659251(150)                            | 13                        |             |
|                                                                           | BNL                                               | 1998        | $\mu^+$        | 11659191(59)                             | 5                         | BNL Average |
| Theory – Expt.                                                            | BNL                                               | 1999        | $\mu^+$        | 11659202(15)                             | 1.3                       |             |
|                                                                           | BNL                                               | 2000        | $\mu^+$        | 11659204(9)                              | 0.73                      |             |
| Diccropancy                                                               | BNL                                               | 2001        | $\mu^{-}$      | 11659214(9)                              | 0.72                      |             |
|                                                                           | $a_{\mu}^{\rm E821} = 11$                         | 16 592 089( | $54)_{stat}(3$ | $(3)_{syst}(63)_{tot} \times 10^{-11}$ ( | $(\pm 0.54 \mathrm{ppm})$ |             |
| SM                                                                        | 3.6 σ                                             | BNL         | •              | 15-year, pe<br>discrep                   | ersistent<br>ancy         |             |
| $116591800$ $116591900$ $116592000$ $116592100$ $a_{\mu} \times 10^{-11}$ |                                                   |             |                |                                          |                           |             |

### g-2 Experiment @ FNAL : Goals



### Improvements over BNL

- More muons => **more statistics (21x)**.
- Long decay channel => **Less pion contamination.**
- Electrostatic quadrupoles to **focus the muon beam**.
- Segmented calorimeters (24 SiPM's) => **less pileup**.
- Laser Calibration System (Italian) => long and short term stability.

### Schedule





# Why **LASER** Calibration System ?

• Mapping the short-term (700 mic. s) gain



# Structure and Components of The Calibration System

### Laser Calibration System



# Monitoring DAQ



### Laser Control System

Synced with the *clock*, *control* and *command* system (CCC).

Programmable generation of *in-fill/out-of-fill* pulses.

• *Flight simulator* : simulates a positron event.

### Source Monitors In Details

## 6 source Monitors (SM) @ FNAL



### Test Stand @ Napoli



### Test Stand @ Napoli



# Naples' DAQ : On-line and Off-line Monitoring

# Naples' DAQ @ FNAL

- Source monitoring DAQ is collecting data continuously even when there is no external trigger or the laser signals (Collecting Americium).
- We have powerful softwares that can :
  - Decode both online and offline data
  - Analyze both online and offline data

# Naples' DAQ Monitoring @ FNAL

|            |            | 0065     | 1601: 2055 |           | Sun Har 19 22:50 | 1:42-2017 |          |
|------------|------------|----------|------------|-----------|------------------|-----------|----------|
| CH.1. DAT. | BOWID TEMP | ESP TEMP | EKT TEMP   | 0145 1010 | CURRENT          | APPLITUDE | EASELINE |
|            | 33.744     | 38,125   | 0.890      | 0.554     | 8.085            | 8279      | 963      |
|            |            |          |            |           |                  | 1867      | 968 1    |
|            | 54, 675    | 18 ms    | A 244      | 30 641    | 8 1995           | 1:189     | 821      |
| 2064       | 32.761     | 28.618   | (1 2 4 1   | 29.778    | SB: SHE          | N927      | 400      |
|            |            |          |            |           |                  |           |          |
|            |            |          |            |           |                  |           |          |
|            |            | 998.4    | 631 5555   |           | 500 840 10 12:59 | 5 41 2017 |          |
| CH.A. DATA | BORID TERF | CVP TEMP | ECT TIME   | 5165 520  | CLOUP AT         | APPLITUDE | BASELINE |
|            |            | 28,124   | 0.560      | P Kid     | 8.064            |           | P-1      |
|            |            |          |            |           |                  | 2867      | aka      |
|            | 54,825     | 26.053   | 0.000      | 49,847    | 8.068            | 12299     | 827 1    |
|            | 52,267     | 36.618   | 0.880      |           | 56.568           | 9672      | 936 1    |
|            |            |          |            |           |                  |           |          |
|            |            |          |            |           |                  |           |          |
|            |            |          |            |           |                  |           |          |
| CHUC BAT.  | BOND TON   | ESF TEMP | DOI THE    | a145 436  | CLARENT          | APPLITUDE | EXECUME  |
|            | 22, 244    | 26,128   | 0.880      | 0.854     | 8.068            |           | 364      |
|            |            |          |            |           |                  | 2657      | 968      |
|            | 54, 525    | 18.008   | 0 890      | 37 841    | 8.085            | 11399     | 927 1    |
|            | 51 261     | 18 618   | 6 299      | 30.218    | 58.584           | 9477      | 358      |

Short term display



Long term display



### Performance and Stability







PIN-





1,000 1,000 1,000 1,000 1,000 1,000



#### Board # 0003

-

PMT-Laser

ADC Yalar

-

ADC Value

-

PMT-Laser

the tax dist value

ter training

abe Value

.....

100





### **ALL SIX BOARDS**

2500 ADC Value

#### **Board #** 0004

1000







ADC Tales

#### Board # 0005

tions town

ADC Value

<u>joini</u>

ADC Value

PMT-Laser





----

ADC Value

#### Board # 0006



### Data (July 1 – 4, 2017) Analysis







### A Sample of the **Americium** Data Collected Over The Vacation



2.15

2.2

2.25

2.1

2.05

1.95

2.3 Time (days) The First Wiggle Plot June 2017



Number of high energy positrons as a function of time

### Summary...

- SM BNL ~ 3.6 Sigma, FNAL aims for 21 times more statistics and will be 4 times more precise hence a 7.5 Sigma discrepancy (if central values stay fixed) is expected.
- All the **Source and Local Monitors** are in place and collecting data since last March. **Naples' DAQ** is collecting **Americium** data even when there's no **external trigger** or **Laser signal**.
- The **DAQ**, **Decoding**, **Analysis** and **Online Monitoring** softwares are ready and are currently in use.
- First **muon data** has already arrived and we have a *wiggle plot*.



### **BACKUP SLIDES**

### THEORY

#### Dirac equation and the magnetic moment of a lepton

Dirac equation in its covariant form looks like this:

$$[i\gamma^{\mu}D_{\mu} - m_l] \Psi = 0 \qquad (9)$$

where we have covariantized the derivative through minimal coupling to the external field  $\mathcal{A}$ ,  $\mathcal{D}_{\mu} = \partial_{\mu} - i e \mathcal{A}_{\mu}$ (covariant derivative with 4-potential  $\mathcal{A}$ ),  $m_{\ell}$  the mass of the lepton  $\ell$  and  $\Psi$  ( = { $\psi_{+}, \psi_{-}$ } column) is its 4-component spinor.

#### Dirac $\mapsto$ Pauli : the "g = 2" factor

Pauli's theory can be shown to be a non-relativistic limit of the Dirac's theory. Equation (9) can be caste into the following form:

$$(E - e \mathcal{A}_0) \psi_+ - \boldsymbol{\sigma} \cdot (\boldsymbol{p} - e \mathcal{A}) \psi_- = m_\ell \psi_+ -(E - e \mathcal{A}_0) \psi_- + \boldsymbol{\sigma} \cdot (\boldsymbol{p} - e \mathcal{A}) \psi_+ - = m_\ell \psi_-$$
(10)

where  $\psi_+$  represents the particle part and the  $\psi_-$  is for the anti-particle. Where we have replaced the differential operators by their symbols, e.g.  $E \equiv i\partial_0$  and  $\mathbf{p} = -i\nabla$ , a weak-field limit  $E - e \mathcal{A}_0 \approx m_\ell$  and the non-relativistic limit  $\mathbf{p} \approx m_\ell \mathbf{v}$  of the second equation will look like:

$$\psi_{-} = \frac{1}{2m_{\ell}} \boldsymbol{\sigma} \cdot (\boldsymbol{p} - e \boldsymbol{A}) \psi_{+}$$
(11)

- -

Plugging this in the first equation of (10) we get:

$$(E - m_{\ell})\psi_{+} = \frac{1}{2m_{\ell}} [\boldsymbol{\sigma} \cdot (\boldsymbol{p} - \boldsymbol{e}\,\boldsymbol{\mathcal{A}})]^{2}\psi_{+} + \boldsymbol{e}\,\boldsymbol{\mathcal{A}}_{0}\,\psi_{+}$$
(12)

Where the classical non-relativistic energy is just the mass-energy subtracted part, so we can take  $E - m = E_{non-rel} = i\partial_t$  and if we expand the red part keeping in mind that the it is a composite operator that operates on the wave-function  $\psi_+$ ,

$$\left[\boldsymbol{\sigma}\cdot(\boldsymbol{p}-e\,\boldsymbol{\mathcal{A}})\right]^{2}\psi_{+} = (\boldsymbol{p}-e\,\boldsymbol{\mathcal{A}})^{2}\psi_{+} + i\boldsymbol{\sigma}\cdot(\boldsymbol{p}\times\boldsymbol{\mathcal{A}})\psi_{+} + i\,e\,\sigma_{k}\,\underline{\epsilon_{kij}}\,\boldsymbol{\mathcal{A}}_{i}\,\boldsymbol{\mathcal{A}}_{j}\,\psi_{+} \tag{13}$$

the last term vanishes because  $A_i A_j$  is symmetric while the Levicivita is not ! Plugging this result to Eq. (12) we arrive at the following final non-relativistic equation:

$$i\frac{\partial}{\partial t}\psi_{+} = \frac{1}{2m_{\ell}}\left[(\boldsymbol{p} - \boldsymbol{e}\,\boldsymbol{\mathcal{A}})^{2} - \boldsymbol{e}\,\boldsymbol{\sigma}\cdot\boldsymbol{B}\right]\psi_{+} + \boldsymbol{e}\,\boldsymbol{\mathcal{A}}_{0}\,\psi_{+} \tag{14}$$

where the magnetic field is given by  $(\mathbf{B})_k = i (\mathbf{p} \times \mathbf{A})_k = i \epsilon_{kij} \mathcal{F}_{ij}$ , with  $\mathcal{F}$  being the electromagnetic fieldstrength tensor. anyway second term inside the square-bracket is the interaction Hamiltonian of a lepton with spin  $\sigma/2$  in a magnetic field  $\mathbf{B}$ , let's write it down separately:

$$\mathcal{H} = -\frac{e}{m_{\ell}} \mathbf{s} \cdot \mathbf{B} \qquad (15)$$

And we know that the interaction energy of a magnetic dipole with moment  $\mu$  in a magnetic field **B** is:

$$\mathcal{H} = -\mu \cdot B$$
 (16)

Equating Eq. (15) and (17) we get:

$$\boldsymbol{\mu} = \frac{e}{m_{\ell}} \boldsymbol{s} = 2 \times \frac{e}{2m_{\ell}} \boldsymbol{s} \tag{17}$$

Therefore, Dirac's equation predicts:

$$g = 2$$
 (18)

### ANOMALOUS MAGNETIC MOMENT

$$g_{1-loop} = \frac{\alpha_{QED}}{\pi} \tag{20}$$

Therefore,

$$g_{QED} = 2 + \frac{\alpha_{QED}}{\pi} + \mathcal{O}(\alpha_{QED}^2)$$
(21)

And according to renormalization theory,  $g_{QED}$  is a series in  $\alpha_{QED}$ . But we are interested in the deviation from g = 2, hence we define the anomalous magnetic moment:

$$a_{\ell} = \frac{|\boldsymbol{\mu}_{\ell}|}{\mu_B} - 1 = \frac{g_{\ell} - 2}{2} \tag{22}$$

where  $\mu_B$  is the Bohr-magnetin (=  $e/m_\ell$ ),  $|\mu|_\ell$  and  $g_\ell$  are the magnetic moment and g factor of lepton  $\ell$  respectively. Therefore complete QED contribution to  $a_\ell$  will be:

$$a_{\ell} = \sum_{n=0}^{\infty} C_n \left(\frac{\alpha_{QED}}{\pi}\right)^n \tag{23}$$

Of course  $C_0 = 0$  coming from the Dirac term and  $C_1 = 1/2$  from the Schwingers'.



Loop contributions (g - 2 = /= 0)



### HEAVY VIRTUAL PARTICLES

$$\delta a_{\ell} = F\left(\frac{m_{\ell}^2}{m_{\ell'}^2}\right) \left[\frac{\alpha_{QED}}{\pi}\right]^2 \tag{24}$$

#### 3 Anomalous Magnetic Moment of Muons

If we consider an unknown particle beyond standard model with mass M flowing in a loop (instead of a muon or a tau) as in the case of Fig. (4), such a particle will also have a contribution similar to the one described in Eq. (24),

$$\delta a_{\ell} \propto F'\left(\frac{m_{\ell}^2}{M^2}\right) \tag{25}$$

we can guess the properties (mass in this example) of such a particle by measuring anomalous magnetic moment of  $\ell$  experimentally and then comparing with the theory. But, anomalous magnetic moment of an electron will of course be insensitive to new physics due to extremely low mass of electrons and  $\tau$  is so short-lived (2.906(10) × 10<sup>-13</sup> s) that designing such an experiment to measure  $a_{\tau}$  is beyond the current technology.

### EXPERIMENTS



### EXPERIMENTS



Fig. 4. The schematics of muon injection and storage in the g - 2 ring. Jegerlehner, Nyffeler, arXiv:0902.3360v1 [hep-ph]



# g-2 Experiment Basics...









Fig. 5. Decay of  $\mu^+$  and detection of the emitted  $e^+$  (PMT=Photomultiplier).

$$N(t) = N_0(E) \exp\left(\frac{-t}{\gamma \tau_{\mu}}\right) \left[1 + A(E) \sin(\omega_a t + \phi(E))\right] \qquad A(E_e) \doteq \frac{1 - 2x_e}{3 - 2x_e}$$

Jegerlehner, Nyffeler, arXiv:0902.3360v1 [hep-ph]



Fig. 6. Distribution of counts versus time for the 3.6 billion decays in the 2001 negative muon data-taking period [Courtesy of the E821 collaboration. Reprinted with permission from [92]. Copyright (2007) by the American Physical Society].

Jegerlehner, Nyffeler, arXiv:0902.3360v1 [hep-ph]

### FCCP 2017

### **Daisuke Nomura**

|                  | <u>2011</u>                     |               | <u>2017</u>                | *to be discussed                           |
|------------------|---------------------------------|---------------|----------------------------|--------------------------------------------|
| QED              | 11658471.81 (0.02)              | $\rightarrow$ | 11658471.90 (0.01)         | [Phys. Rev. Lett. 109 (2012) 111808]       |
| EW               | <b>15.40</b> (0.20)             | $\rightarrow$ | 15.36 (0.10)               | [Phys. Rev. D 88 (2013) 053006]            |
| LO HLbL          | 10.50 (2.60)                    | $\rightarrow$ | 9.80 (2.60)                | [EPJ Web Conf. 118 (2016) 01016]*          |
| NLO HLbL         |                                 |               | 0.30 (0.20)                | [Phys. Latt. B 735 (2014) 90]*             |
|                  | HLMNT11                         |               | <u>KNT17</u>               | Davier et al (2017)                        |
| LO HVP           | <b>694.91</b> (4.27)            | $\rightarrow$ | 692.23 <mark>(2.54)</mark> | this work <b>*</b> 693.1 (3.4              |
| NLO HVP          | -9.84 (0.07)                    | $\rightarrow$ | -9.83 (0.04)               | this work*                                 |
| NNLO HVP         |                                 |               | 1.24 (0.01)                | [Phys. Latt. B 734 (2014) 144] 🏾 🏾 🏾 🏾 🏾 🏾 |
| Theory total     | 11659182.80 <mark>(4.94)</mark> | $\rightarrow$ | 11659181.00 (3.62)         | this work                                  |
| Experiment       |                                 |               | 11659209.10 (6.33)         | world avg                                  |
| Exp - Theory     | 26.1 (8.0)                      | $\rightarrow$ | 28.1 (7.3)                 | this work                                  |
| $\Delta a_{\mu}$ | 3.3σ                            | $\rightarrow$ | 3.9σ                       | this work                                  |



### Accelerator cycle @ FNAL



- 3 different time gaps between Fill windows
  - 10 ms
  - ~200 ms
  - ~1000 ms

### BOS pulse from CCC used to codify four different in-fill/inter-fill programs



### New firmware/software update to manage the new interface with CCC system