Muon g-2Current experimental status and future prospects

Alberto Lusiani Scuola Normale Superiore and INFN, sezione di Pisa

XXIV Cracow EPIPHANY Conference

on Advances in Heavy Flavour Physics

9-12 January 2018

Magnetic moment, gyromagnetic factor, gyromagnetic anomaly

$$q_{\mu} = \text{muon charge}$$

$$q_{\mu} = \text{muon charge}$$

$$\vec{g}_{\mu} = muon \text{ spin}$$

$$g_{\mu} = 2 \quad \text{Dirac equation}$$

$$g_{\mu} > 2 \quad \text{QED, due to radiative corrections}$$

$$muon \text{ gyromagnetic anomaly } a_{\mu} = \frac{g_{\mu} - 2}{2}$$

$$\text{Standard Model prediction: } a_{\mu} = \frac{\alpha}{2\pi} + \text{higher order corrections}$$

$$muon \text{ spin precession in magnetic field, at rest: } \omega_{s} = -g_{\mu} \frac{q_{\mu}B}{2m_{\mu}}$$

$$g_{\mu} \text{ measurement}$$

- g_{μ} from measurements of ω_s , B, m_{μ} ; $q_{\mu^-} = -e$
- g_{μ} accurately predicted by the theory \Rightarrow test theory and search for New Physics effects

Alberto Lusiani, SNS – Epiphany Conference, Cracow, 9-12 January 2018

First g_{μ} measurement (1957)

Observations of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: the Magnetic Moment of the Free Muon*

Richard L. Garwin,[†] Leon M. Lederman, and Marcel Weinrich

Physics Department, Nevis Cyclotron Laboratories, Columbia University, Irvington-on-Hudson, New York, New York (Received January 15, 1957)

L EE and Yang^{L-3} have proposed that the long held space-time principles of invariance under charge conjugation, time reversal, and space reflection (parity) are violated by the "weak" interactions responsible for decay of nuclei, mesons, and strange particles. Their hypothesis, born out of the $\tau-\theta$ puzzle,⁴ was accompanied by the suggestion that confirmation should be sought (among other places) in the study of the successive reactions

$$\pi^+ \rightarrow \mu^+ + \nu$$
, (1)

$$\mu^+ \rightarrow e^+ + 2\nu$$
. (2)

a_{μ} experimental measurements since 1960

	data	pub		$a_{\mu} \cdot 10^3$	δa_{μ}
CERN cyclotron		1960		1.13 (14)	12.4%
CERN cyclotron		1961		1.145 (22)	1.9%
CERN cyclotron		1962		1.162 (5)	0.43%
CERN synchroton		1966		1.165 (3)	0.27%
CERN synchroton		1968		1.166 16 (31)	270 ppm
CERN synchroton	1975-1977	1979	μ^+	1.165 910 0 (110)	9.4 ppm
CERN synchroton	1975-1977	1979	μ^{-}	1.165 937 0 (120)	10 ppm
BNL	1998		μ^+	1.165 919 1 (59)	5 ppm
BNL	1999		μ^+	1.165 920 2 (14) (6)	1.3 ppm
BNL	2000	2004	μ^+	1.165 920 3 (6) (5)	0.7 ppm
BNL	2001	2004	μ^-	1.165 921 4 (8) (3)	0.7 ppm
BNL	2000-2001	2006	μ^{\pm}	1.165 920 89 (54) (33)	0.54 ppm

a_{μ} experimental measurements since 1979 vs. theory

Muon g-2, Current experimental status and future prospects

a_{μ} experimental measurements, experiment vs. theory

planned a_{μ} experimental measurements

6	experiment δa_{μ} goal		status				
F	FNAL E989 J-PARC E34 - phase 1 - phase 2	140 ppb total 370 ppb stat 100 ppb stat	commissioning run in 2017, starts in 2018 approved, expected to begin in ${\sim}2020$ proposed				
E	3NL E821 〈NT17 (theory)	540 ppb 310 ppb	completed in 2001 2017				
imp	improvement on exp. vs. theory comparison						
if	FNAL E989 reaches 1- exp. and theory values theory uncertainty rem	40 ppb goal 5 as today nains as today	then exp. – theory discrepancy $\Rightarrow \sim 7\sigma$				

a_{μ} measurement method

$\overline{a_{\mu}}$ measurement method, effect of electric field

in a storage ring, electric fields are usually present for focusing and containment of particles

$$ec{\omega}_a = -rac{q_\mu}{m_\mu} \left[a_\mu ec{B} - \left(a_\mu - rac{1}{\gamma^2 - 1}
ight) rac{eta imes E}{c}
ight]$$

CERN 1975-, BNL, FNAL

$$egin{aligned} &
ho_{\mu}^{ ext{magic}} = 3.094 \, ext{GeV} \quad \Rightarrow \quad \gamma = 29.3 \ & \Rightarrow \quad \left(a_{\mu} - rac{1}{\gamma^2 - 1}
ight) \simeq 0 \end{aligned}$$

J-PARC E34

ultra-cold muons
$$E = 0 \Rightarrow \vec{\beta} \times \vec{E} = 0$$

Alberto Lusiani, SNS – Epiphany Conference, Cracow, 9-12 January 2018

a_{μ} measurement method

using proton spin precession (NMR) to measure B , $\omega_p = \mu_p \frac{q_p B}{m_p}$ using $\mu_{e,\mu,p} = g_{e,\mu,p} \frac{q_{e,\mu,p}}{2m_{e,\mu,p}} S_{e,\mu,p}$, $ q_{e,\mu,p} = e$, $S_{e,\mu,p} = \hbar/2$						
	a_{μ} uncertainties budget today					
$a_{\mu}^{\mathrm{exp}} = rac{g_e}{2} rac{\omega_a}{\omega_p} rac{m_{\mu}}{m_e} rac{\mu_p}{\mu_e}$	$egin{array}{c} \omega_a/\omega_p \ g_e \ m_\mu/m_e \ \mu_p/\mu_e \end{array}$	540 ppb 0.00026 ppb 22 ppb 3 ppb	BNL E821 final report CODATA 2014 CODATA 2014 CODATA 2014			
ω_a/ω_p uncertainties budget (BNL E821)						
ω_a statisti ω_a system ω_p system	ω_a statistical 460 ppb ω_a systematic 210 ppb ω_p systematic 170 ppb					
present experimental value is not systematically limited						

FNAL E989 experiment

$$\delta a_{\mu} = 140 \, {
m ppb}$$
 goal

	BNL E821	FNAL E989	
ω_a statistical ω_a systematic ω_p systematic	460 ppb 210 ppb 170 ppb	100 ppb 70 ppb 70 ppb	$\times 21$ detected muon decays $(1.6 \cdot 10^{11})$ improve all significant contributions improve all significant contributions
total	540 ppb	140 ppb	

combine techniques of three areas of experimental Physics

Accelerator Physics: muon production, storage and decay at FNAL

Accelerator Physics: improvements at FNAL w.r.t. BNL

- more muons per proton
- more effective separation of muons from protons and pions
- Iower instantaneous muon decay rate

High Energy Physics: detector

- ► 24 calorimeter modules of 6×9 PbF₂ crystals with SiPM readout
 - detect muon decay electrons, measure energy from Cherenkov light (fast)
- 3 straw chamber trackers with total of 1500 channels
 - reconstruct beam distribution inside storage ring from tracked muon decay electrons
- auxiliary detectors for beam position monitoring (fiber harps, entrance counters)
- laser calibration system to monitor and calibrate calorimeter energy measurements

comparison with E821

- more granular calorimeter, faster data acquisition
- much improved laser calibration system

calorimeter performance

Alberto Lusiani, SNS - Epiphany Conference, Cracow, 9-12 January 2018

tracker performance

Alberto Lusiani, SNS - Epiphany Conference, Cracow, 9-12 January 2018

laser calibration system

- send laser pulses to all calorimeter crystals, read back SiPMs signals
- measure SiPMs gain variation induced by instantaneous hit rate
 - BNL E821 laser calibration system could not be used to this aim
- measure SiPMs gain variation induced by temperatures, detector power supplies voltage
- measure SiPMs response as function of number of photoelectrons

ω_a measurement

- let polarized muons in magnetic field decay for 700 μ s (lab muon lifetime $\gamma \tau_{\mu} = 64 \,\mu$ s)
- higher energy electrons from muon decay correlated with muon spin
- rate of electrons above threshold of 0.6 E_{MAX} over 700 µs fill is decaying exponential modulated by the precession frequency
- fit on above-threshold electrons gives ω_a with close to maximal statistical sensitivity

ω_a measurement statistical uncertainty

Alberto Lusiani, SNS – Epiphany Conference, Cracow, 9-12 January 2018

ω_a measurement systematics

	E821 [ppb]	E989 improvement plans	goal [ppb]
gain char	iges 120	better laser calibration low-energy threshold	20
pileup	80	low-energy samples recorded calorimeter segmentation	40
lost muor	ıs 90	better collimation in ring	20
СВО	70	higher n value (frequency) better match of beamline to ring	<30
E and pit	ch 50	improved tracker precise storage ring simulation	30
total	180		70

pitch = oscillating vertical inclination of muon momentum

Atomic and Accelerator Physics: magnetic field

- make magnetic field as uniform as possible (shimming)
- keep magnets mechanically and thermally stable
- periodically map field inside storage ring with NMR probe trolley
 - pulsed proton NMR, < 10 ppb single shot precision
- monitor field during data-taking with fixed probes
- BNL E821 precision
 - 1 ppm (azimuth average)
 - 100 ppm (local variations)
- FNAL E989 goal
 - 1 ppm (azimuth average)
 - 50 ppm (local variations)

magnetic field shimming

 Many passive and active shimming tools to achieve unprecedented field homogeneity for such a large volume. Each "knob" adjusts nearly orthogonal thermal inner coil insulation components of the field shape dipole correction coil YOKE Active shims Passive shims wedge pole piece Dipole correction coils Iron wedges pole Surface correction coils Pole tilt fixed outer NMR Iron pole bumps coils prohos beam 000 aperture programmable current sheet FNAL goal is x2^{ignauce} improvement in 🖥 inner coil homogeneity 2 -2 -1 0 1 -3 [slide by Joe Grange, Argonne] radial distance (cm

Alberto Lusiani, SNS – Epiphany Conference, Cracow, 9-12 January 2018

magnetic field shimming results

shimming process improved field uniformity ×30 over a year

 \blacktriangleright uniformity $\times 4$ better than achieved at BNL after 1st shimming round

BNL storage ring magnet moved from BNL to FNAL (2012)

Alberto Lusiani, SNS – Epiphany Conference, Cracow, 9-12 January 2018

BNL storage ring magnet moved from BNL to FNAL (2012)

Alberto Lusiani, SNS - Epiphany Conference, Cracow, 9-12 January 2018

ω_p measurement systematics, part 1

	E821 [ppb]	E989 improvement plans	goal [ppb]
absolute field cali- bration	50	Special 1.45 T calibration magnet with thermal enclosure; additional probes; better electronics	35
trolley probe cali- bration	90	Plunging probes that can cross calibrate off- central probes; better position accuracy by phys- ical stops and/or optical survey; more frequent calibrations	30
trolley measure- ments of B_0	50	reduced position uncertainty by factor of 2; im- proved rail irregularities; stabilized magnet field during measurements*	30
fixed probe interpo- lation	70	Better temperature stability of the magnet; more frequent trolley runs	30
muon distribution	30	Additional probes at larger radii; improved field uniformity; improved muon tracking	10
time-dependent external magnetic fields	-	direct measurement of external fields; simulations of impact; active feedback	5

ω_p measurement systematics, part 2

	E821 [ppb]	E989 improvement plans	goal [ppb]
higher multipoles, trolley temperature uncertainty and its power supply volt- age response, and eddy currents from the kicker	100	Improved trolley power supply; trolley probes ex- tended to larger radii; reduced temperature ef- fects on trolley; measure kicker field transients	30
total	170		70

schedule

J-PARC E34 experiment

muon production and storage

- pions stop in target and decay to polarized muons
- surface muons stop in muon production target and form muonium ($e^-\mu^+$)
- ▶ 300 K° muons have 2.3 keV average momentum (ultra-cold)
- resonant laser ionization splits muonium
- muons are accelerated to $p_L=300\,{
 m MeV}$ keeping $p_T\sim 2.3\,{
 m keV}$ \Rightarrow $p_T/p_L\simeq 10^{-5}$
- muons stored in 33 cm-radius MRI 3 T magnet
- very weak magnetic focusing, no electric field
- requires several non-trivial research developments

muon production and storage

- pions stop in target and decay to polarized muons
- surface muons stop in muon production target and form muonium ($e^-\mu^+$)
- ▶ 300 K° muons have 2.3 keV average momentum (ultra-cold)
- resonant laser ionization splits muonium
- muons are accelerated to $p_L=300\,{
 m MeV}$ keeping $p_T\sim 2.3\,{
 m keV}$ \Rightarrow $p_T/p_L\simeq 10^{-5}$
- muons stored in 33 cm-radius MRI 3 T magnet
- very weak magnetic focusing, no electric field
- requires several non-trivial research developments

storage ring and detector

comparison with E821

	BNL E821	J-PARC E34
muon momentum	3.09 GeV/c	0.3 GeV/c
storage ring radius	7 m	0.33 m
storage field	1.5 T	3.0 T
focusing field (n-index)	0.14 (electric)	1.5 E-4 (magnetic)
average field uniformity	≈1 ppm	<< 1ppm
(local uniformity)	≈50 ppm	≈1ppm
Injection	inflector + kick	spiral + kick
Injection efficiency	3-5%	80%
muon spin reversal		pulse-to-pulse
positron measurement	calorimeters	tracking
positron acceptance*	65%	≈100%
muon polarization	≈100%	≈50%
events to 0.46 ppm	9 x 10 ⁹	5 x 10 ¹¹
* in the energy region of inter	est	

status and prospects

some accomplisced research and development

- measurement of thermal muonium production yield and distributions
- built ionization laser with 10% of design power
- demonstration of electro-static acceleration of slow muons
- design of spiral injection scheme
- demontration of magnetic field shimming to 1 ppm
- development of full size silicon detector and custom frontend electronics

prospects

- completion of R&D in 2018
- data-taking expected about 2020
- first stage with 370 ppm statistical sensitivity approved
- final sensitivity goal 100 ppm statistical
- systematics radically different from FNAL experiment ones

- interesting times ahead for muon g-2
- in late 2018 FNAL E989 may measure a_{μ} with precision comparable to BNL E821
- ▶ in 2-3 years from now a 140 ppb measurement is possible
- in 2020 J-PARC E34 will start data-taking
 - new method, different systematics
- meanwhile, a large composite effort is on-going to improve the theory prediction

Backup Slides

ω_a systematics from detector gain variation (E821)

- detector gain variation causes effective E_{thr} variation $\Rightarrow \omega_a$ shift
- large event rate variation over one fill causes deterministic gain variation within fills
- laser gain calibration system could not be used (unknown systematics)
- Fit gain variation in fill from E spectrum end-point: $\frac{G(t)}{C}$

$$rac{G(t)-G(\infty)}{G(\infty)}=f\cdotrac{ar{E}(t)-ar{E}(\infty)}{ar{E}(\infty)}$$

estimated systematic is 100% of the correction

ω_a systematics from event pileup (E821)

- ► double event pileup probability \propto event rate square $(e^{2t/\gamma\tau})$, affects ω_a fit
- \blacktriangleright at each time, contribution from pileup to energy distribution subtracted on average
- ▶ D(E, t) energy distribution of actually pileup of "trigger" pulse and "shadow" pulse
- $S_T(E, t)$ energy distribution of "trigger" pulse
- $S_S(E, t)$ energy distribution of additional "shadow" pulse on top of "trigger" pulse
- pileup contribution $P(E, t) = D(E, t) S_T(E, t) S_S(E, t)$
- subtracting P(E, t) from measured energy distribution restores true energy distribution
 - consistency check: resulting energy distribution invariant w.r.t. event rate
 - use to correct above-energy-threshold counts
 - systematic uncertainty from approximations of procedure

ω_a systematics from event pileup (E821)

pileup contribution to N(E,t), $P(E, t) = D(E, t) - S_T(E, t) - S_S(E, t)$

- dotted line corresponds to observed distribution
- pileup contribution is negative for $E < 2.5 \,\text{GeV}$, but plotted as positive
- above 3.1 GeV total observed distribution corresponds to pileup as expected

- storage ring defects may originate periodic forces that lead to muon losses
- beam scraping short after injection reduces further losses of marginal injected muons
- dedicated scintillators on triple coincidence detect lost muons
- muon loss is included in the fit
- uncertainties on lost muons phase contribute to ω_a systematic uncertainty

 ω_a systematics, fast rotation interlude (E821)

- muons are injected as a short bunch
- muon momentum spread progressively distributes bunch over whole ring
- bunch spreading measured from event rate variation with cyclotron frequency

ω_a systematics from coherent betatron oscillations or CBO (E821)

- electric field quadrupole focusing causes betatron oscillations
- beam oscillations detected with scintillating fiber beam monitors
- beam oscillations start with amplitude determined by beam injection
- beam oscillations amplitude decays due to tune spread (focusing quads imperfections)

Backup Slides

ω_a systematics from coherent betatron oscillations or CBO (E821)

Physical frequency	Variable	Expression	Frequency	Period
Anomalous precession	f_a	$\frac{e}{2\pi m}a_{\mu}B$	0.23 MHz	4.37 μs
Cyclotron	f_c	$\frac{v}{2\pi R_0}$	6.71 MHz	149 ns
Horizontal betatron	f_x	$\sqrt{1-n}f_c$	6.23 MHz	160 ns
Vertical betatron	f_{y}	$\sqrt{n}f_c$	2.48 MHz	402 ns
Horizontal CBO	$f_{\rm CBO}$	$f_c - f_x$	0.48 MHz	2.10 µs
Vertical waist	$f_{\rm VW}$	$f_c - 2f_y$	1.74 MHz	$0.57 \ \mu s$

▶ horizontal CBO modulates detector acceptance hence N, A and ϕ

- amplitude and decay time of all modulations are fit on wiggle plot
- \blacktriangleright CBO effects suppressed by factor ${\sim}10$ by approx. detector azymuthal symmetry
- CBO systematic contribution from varying remaining fixed parameters not fit on data

ω_a systematics from electric field corrections (E821)

electric-field correction

momentum and beam radial spread induces non-zero electric field corrections

$$\left\langle \frac{\delta \omega_a}{\omega_a} \right\rangle = -2\beta^2 n(1-n) \left\langle \left(\frac{R}{R_0}\right)^2 \right\rangle$$

- radial spread measured from fast rotation analysis
- additionally
 - σ on muon radius vs. E quadrupole center $\pm 0.5 \text{ mm} (\pm 0.01 \text{ ppm in } a_{\mu})$
 - σ on muon vertical position vs. E quadrupole center $\pm 1 \text{ mm} (\pm 0.02 \text{ ppm in } a_{\mu})$
- typical uncertainty on correction 50 ppb for single run

ω_a systematics from pitch corrections (E821)

- ▶ vertical inclination of muon momentum of angle ψ , $\frac{\delta \omega_a}{\omega_a} = -\frac{1}{2}\psi^2$
- ψ_m = amplitude of angle oscillation
- $\langle \psi_m^2 \rangle = n \langle y^2 \rangle / R_0^2$, $\langle y^2 \rangle$ mean-squared vertical spread measured with FBM
- average effect of oscillation on muon ensemble $rac{1}{4}\langle\psi_m^2
 angle$
- ▶ typical uncertainty on correction 40 ppb for single run

ω_p systematics from absolute calibration of standard probe (E821)

- ideal case: precession of free protons in vacuum, unperturbed B field
- reality:
 - ▶ protons in water with a CuSO₄ additive
 - ▶ B field perturbed by magnetization of the materials in probe and trolley

absolute calibration

- absolute calibration probe, protons in water sphere, low magnetic susceptibility
- correction of $\tilde{\omega}_p$ in water to vacuum using
 - ▶ ratio of g for proton in water to g of e in ground state of hydrogen atom (10 ppb)
 - ratio of g electron to proton in hydrogen (9 ppb)
 - ▶ proton g corrections from vacuum to bound state (theory calculatiom, 9 ppb)