

INO-CNR Istituto Nazionale di Ottica

The new g-2 Experiment at Fermilab

Andrea Fioretti, *CNR-INO and INFN, Pisa Italy* on behalf of the g-2 collaboration EXA 2017 , Wien, August 14th, 2017

Outline

- Introduction and motivations
- Principle of the experiment
- Experimental overview
- Status of the experiment
- Conclusions

Outline

- Principle of the experiment
- Experimental overview
- Status of the experiment
- Conclusions

A particle with spin has a magnetic moment $\vec{\mu}$ directed along its spin \vec{S} ,

$$\vec{\mu} = \frac{g}{2m} \vec{S}$$

the g-factor relates the magnetic moment to the angular momentum.

Dirac's equation predicts g = 2 but quantum fluctuations produce an anomaly

$$\frac{a}{2} = \frac{g-2}{2}$$

Example: Electron anomaly: its value has been accurately reproduced by QED calculations (from Schwinger on...)

 a_e = 0,001 159 652 181 64 (76) (thy, 10th order) a_e = 0,001 159 652 180 73 (28) (exp, 24 ppb)

 a_{μ} much more sensitive than a_{ε} to massive particles in loops: ${\binom{m_{\mu}}{m_{e}}}^{2} \cong 43000$

$$a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{EW} + a_{\mu}^{HAD}$$

example graphs for the three above contributions to a_{μ}

From: T. Blum et al. (2013), https://arxiv.org/abs/1311.2198

Value ($\times 10^{-11}$) units
$116584718.951 \pm 0.009 \pm 0.019 \pm 0.007 \pm 0.077_{\alpha}$
$6923\pm\!42$
6949 ± 43
-98.4 ± 0.7
105 ± 26
154 ± 1
$\frac{116591802 \pm 42_{\rm H\text{-}LO} \pm 26_{\rm H\text{-}HO} \pm 2_{\rm other} (\pm 49_{\rm tot})}{116591802 \pm 42_{\rm H\text{-}LO} \pm 26_{\rm H\text{-}HO} \pm 2_{\rm other} (\pm 49_{\rm tot})}$
$116591828\pm43_{ ext{H-LO}}\pm26_{ ext{H-HO}}\pm2_{ ext{other}}(\pm50_{ ext{tot}})$

- HVP (lo/ho): Hadronic Vacuum Polarization, low/high order
- HLbL: Hadronic Light-by-Light
- [20] M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Eur. Phys. J. C71 (2011) 1515, Erratum-ibid. C72 (2012) 1874.
- [21] K. Hagiwara, R. Liao, A. D. Martin, D. Nomura and T. Teubner, J. Phys. G38 (2011) 085003.

(*) Glasgow consensus, 2007, http://www.ippp.dur.ac.uk/old/MuonMDM/

INO-CNR Istituto Nazionale di

OTTICA

E821 experiment at BNL has generated a large interest:

 $a_{\mu}^{exp} = 1\,165\,920\,89\,(63) \times 10^{-11} \,(\pm 0.54 \,\mathrm{ppm})$

E821 experiment at BNL has generated a large interest:

$$a_{\mu}^{exp} = 1\,165\,920\,89\,(63) \times 10^{-11} \,(\pm 0.54 \,\mathrm{ppm})$$

$$a_{\mu}{}^{th} =$$
 1 165 918 02 (49) $~ imes 10^{-11}~(\pm 0.42~{
m ppm})$

There is a tantalizing $\sim 3.3\sigma$ deviation with SM prediction (persistent >10 years):

$$a_{\mu}^{exp} - a_{\mu}^{SM} = 261 (or \ 287) \pm 80 \times 10^{-11}$$

Current discrepancy limited by:

Experimental uncertainty \rightarrow New experiments at FNAL and J-PARC x4 accuracy Theoretical uncertanty \rightarrow limited by hadronic effects

- Reduce the experimental error bar in a_{μ} by a factor 4
- Resolve the long-standing E821 g-2 discrepancy

- Reduce the experimental error bar in a_{μ} by a factor 4
- Resolve the long-standing E821 g-2 discrepancy

- With new e+e- → hadron data samples and improvements on LbL contribution theory error should come down by about 30% in the next 5 years
- Lattice community provides avenues to independent calculations
- If current discrepancy persists, significance will be pushed beyond 5σ discovery threshold
- Anticipated theoretical improvement could lead to >7σ discrepancy

- New massive particles appearing in loops
- Dark Matter/Dark Photons
- Supersymmetry

Introduction and motivations

- Principle of the experiment
- Experimental overview
- Status of the experiment
- Conclusions

Principle of the experiment

Store longitudinally polarized muons in a ring and observe their decay product (positrons). If $g \neq 2$ then the spin \vec{S} rotates faster than momentum \vec{p} .

- measure the uniform magnetic field \vec{B}
- measure the "anomalous" precession $\omega_a = \omega_s \omega_c$

$$\omega_{S} = g_{\mu} \frac{eB}{2m} + (1 - \gamma) \frac{eB}{\gamma m} \qquad \omega_{C} = \frac{eB}{m\gamma}$$

$$\frac{g_{\mu}-2}{2}=\ a_{\mu}=\omega_{a}\frac{m}{eB}$$

get a_{μ}

Principle of the experiment

Store longitudinally polarized muons in a ring and observe their decay product (positrons). If $g \neq 2$ then the spin \vec{S} rotates faster than momentum \vec{p} .

- measure the uniform magnetic field \vec{B}
- get a_{μ} • measure the "anomalous" precession $\omega_a = \omega_S - \omega_C$

Istituto Nazionale di Fisica Nuclear

An Electric field is necessary for vertical focusing of the beam so:

$$\overrightarrow{\omega_a} = -\frac{e}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} \right]$$

The extra term is zero for $\gamma = 29,3$ ($P_{\mu} = 3.09$ GeV/c)

Analyzing the muon spin

- Parity violation in muon decay → highest energy decay positron emitted opposite of muon spin
- When spin is aligned/anti-al. with momentum, the boost subtracts/adds, and the decay positron energy is reduceded/increased in the lab frame
- This results in a modulation of the energy spectrum at the g-2 frequency

Recap the 4 key elements

(1) Polarized muons~ 97% polarized for forward decays

(2) Precession proportional to (g-2)

- (3) P_{μ} magic momentum = 3.094 GeV/c No *E* effect on precession when γ = 29.3
- (4) Parity violation in the decay gives average spin direction. The number of higher energy positrons is modulated at ω_a

- Introduction and motivations
- Principle of the experiment
- Experimental overview
- Status of the experiment
- Conclusions

INO-CNR ISTITUTO NAZIONALE DI OTTICA

The g-2 Collaboration

Creating the Muon Beam for g-2

- 8 GeV p batch into Recycler
- Split into 4 bunches
- Extract 1 by 1 to strike target
- Long FODO channel to collect $\pi \rightarrow \mu v$
- p/ π/μ beam enters DR; protons kicked out; π decay away
- μ enter storage ring

INO-CNR Istituto Nazionale di Ottica

The magnetic field

The magnetic field

27

Fermilab

- Regularly map field inside vacuum chamber with NMR probe trolley
- Monitor field during datataking with fixed probes and interpolate
- Shimming trolley contains array of probes that map whole storage volume
- Field in storage volume is measured using pulsed proton NMR (<10ppB single shot precision)

- BNL E821 result:
 - 1 ppm (azimuth average)
 - 100 ppm (local variations)
- FNAL E989 goal:
 - 1 ppm (azimuth average)
 - 50 ppm (local variations)

Istituto Nazionale di Fisica Nuclear

The magnetic field

- Many passive and active shimming tools to achieve unprecedented field homogeneity for such a large volume.
- Each "knob" adjusts nearly orthogonal components of the field shape

thermal insulation

inner coil

 August 2016: completed addition of surface foils & achieved 50 ppm goal for rough shimming:

The detectors: calorimeters

Energy and time of positrons is measured with 24 calorimeters, each one segmented in 54 channels. Each PbF₂ crystal is read out by a Silicon Photomultiplier (SiPM)

Litituto Nazionale di Fisica Nucleare

The detectors: trackers

They are used to determine beam position vs time

2000

0

4000 6000 8000

Global X (mm)

Aux detectors: harps and counters

Fiber Harps

2 locations, 2 axis

- used to monitor the muon beam entrance position and angle during commissioning
- measures betatron oscillations during run

Entrance counters

outside the inflector

- gives relative intensity of fill
- timing of the fill (resolution << 150ns, cyclotron period)

Idea:

• Send trains of laser pulses on known intensity synchronously on all calorimeters' channels

Goals:

- Absolute calibration of the SiPMs response (photoelectrons/photons response)
- Provide **short term** (in fill, gain saturation) and **long term** (bias and temperature variations) calibration of the of the SiPM gain function
- debugging of Calorimeters and Data Acquisition System (DAQ debugging) by providing physical signals
- provide additional synchronization signals

INO-CNR ISTITUTO NAZIONALE DI OTTICA

The laser calibration system

The laser System

Laser diodes @405nm, 600ps, 1nJ/pulse, 0-40 MHz rep. rate

The laser System

Laser diodes @405nm, 600ps, 1nJ/pulse, 0-40 MHz rep. rate

10⁻⁴ / h stability demonstrated with mono-energetic test beam at SLAC

Data Acquisition System

- Calorimeters, trackers and the laser monitoring system are read out by custom 800 MSPS waveform digitizers.
- The DAQ produces a deadtime-free record of each 700 µs muon fill. We get 12 fills per second, providing a total data rate of 20 GB/s.
- Data from each calorimeter is processed by an NVidia Tesla K40 GPU, which processes 33M threads per event.
- Data is sorted by T-method (chopped islands) and Q-method (current integrated) data, from which timing info can be extracted.
- The DAQ software is MIDAS based

- Introduction and motivations
- Principle of the experiment
- Experimental overview
- Status of the experiment
- Conclusions

INO-CNR Istituto Nazionale di Ottica

Status of the experiment

- Almost all different sub-systems already in place and in operation
- First beam injected into ring on May 31, 2017
- Beam (protons and muons) stored for several hundred turns.
- in July 2017 completed commissioning run (10¹⁶ proton on target, 3billion muons delivered to ring)
- first wiggle plot ready!
- shut-down for Beam/Systems tune-up : ready for next commissioning run, October 1st

10

03/06/17 10/06/17 17/06/17 24/06/17 01/07/17

10/06/17 17/06/17 29/00/17 01/07/17

03/06/17

Date

1000

Date

03/06/17 10/06/17 17/06/17 24/06/17 01/07/17

Date

Results of the commissioning run

Conclusions and outlook

- The new E989 experiment at Fermilab will measure the anomaly a_{μ} of the muon to 4x the precision of the previous BNL measurement (0.54 ppm)
- If the BNL value holds, this could provide a 7σ discrepancy with the Standard Model and plenty of room for New Physics.
- A 5 weeks commissioning run just completed successfully. Next run scheduled for October 1st, 2017

Nature, April 11th 2017

• Our goal is to reach the BNL level precision by end 2018, and the final 0,14 ppm result measurement in 2020. This will require a total of 1.5x10¹¹ collected events.

Thank you for your attention

INO-CNR ISTITUTO NAZIONALE DI OTTICA

Backup

- In last 60 years, technology advancements has allowed enormous progress in experimentally measuring this quantity
- Each measurement gained sensitivity to additional interaction types

2004: Brookhaven measurement first to find robust discrepancy with SM value (\sim 3.6 σ)

Authors	Year/Lab	a_{μ}	δa_{μ}
Garwin <i>et al.</i>	'60 CERN	0.001 13(14)	124 ppt
Charpak <i>et al.</i>	'61 CERN	0.001 145(22)	19 ppt
Charpak et al.	'62 CERN	0.001 162(5)	4.3 ppt
Farley et al.	'66 CERN	0.001 165(3)	2.7 ppt
Bailey et al.	'68 CERN	0.001 166 16(31)	270 ppm
Bailey et al.	'79 CERN	0.001 165 923 0(84)	8 ppm
Brown et al.	'00 BNL μ^+	0.001 165 919 1(59)	
Brown et al.	'01 BNL μ^+	0.001 165 920 2(14)(6)	
Bennett et al.	'02 BNL μ^+	0.001 165 920 4(7)(5)	
Bennett et al.	'04 BNL μ^-	0.001 165 921 4(8)(3)	
BNL E821 & CODATA 2010	'06 BNL	0.001 165 920 91(63)	0.54 ppm
WA (CODATA 2008)		0.001 165 920 89(63)	0.54 ppm

a_{μ} determination

$$\vec{\omega}_{s} = -\frac{gq\vec{B}}{2m} - (1-\gamma)\frac{q\vec{B}}{\gamma m}$$
$$\vec{\omega}_{c} = -\frac{q\vec{B}}{\gamma m}$$
$$\vec{\omega}_{a} \equiv \vec{\omega}_{s} - \vec{\omega}_{c} = -\left(\frac{g-2}{2}\right)\frac{q\vec{B}}{m} = -a_{\mu}\frac{q\vec{B}}{m}$$

average B in muon orbit measured with proton spin precession frequency $\tilde{\omega}_p$

a_{μ}^{exp} determination

$$a_{\mu}^{\exp} = \frac{g_e}{2} \frac{\omega_a}{\tilde{\omega}_p} \frac{m_{\mu}}{m_e} \frac{\mu_p}{\mu_e}$$

- $\omega_a/\tilde{\omega}_p$ (540 ppb) from muon $g-2 \exp WA$
- **g**_e (0.0003 ppb) from a_e measurements
- m_{μ}/m_e (22 ppb) from CODATA 2014
- μ_p/μ_e (3 ppb) from CODATA 2014

The theory error in HVP(Io) is exp

Low order Hadronic contribution is determined by cross-sections knowledge

Nature, April 11th 2017

The Muon g-2 experiment will look for deviations from the standard model by measuring how muons wobble in a magnetic field.

PARTICLE PHYSICS

http://www.nature.com/news/muons-big-moment-couldfuel-new-physics-1.21811

Muons' big moment

Segmented PbF₂ Calorimeter with SiPM Readout

SiPM boards optimized to produce PMT-like pulses to exploit short pulse duration of Cherenkov crystals (relevant: pileup)

E989: 38 institutes, >150 members

Domestic Universities	Italy	
Boston	- Frascati,	University College London
- Cornell	– Roma 2,	Liverpool
– Illinois	- Udine	Ovford
 James Madison 	- Pisa	Oxiora
 Massachusetts 	- Naples	Rutherford Lab
 Mississippi 	- Trieste	Merea Korea
 Kentucky 	*: China:	KAIST
– Michigan	- Shanghai	
 Michigan State 	The Netherlands:	~
 Mississippi 	- Groningen	S S
 Northern Illinois University 	Germany:	11 2
 Northwestern 	– Dresden	
– Regis	Japan:	
– Virginia	- Osaka	
- Washington	Bussia:	
 York College 	- Dubna	n = 2
National Labs	- PNPI	g z
- Argonne	- Novosibirsk	
- Brookhaven		

- Fermilab

- Muons, Inc.

Consultants

.

D.W. Hertzog, Co-Spokesperson, hertzog@uw.edu B.L. Roberts, Co-Spokesperson, roberts@bu.edu C. Polly, Project Manager

Muon precession frequency

from B. Casey, FNAL

Systematics

Design not driven by absolute performance, but relative stability early to late Know how well we did on these for BNL experiment. Need to do better by a factor of 4. Detector package designed to contain the tools to enable this.

> A. Fioretti - The new g-2 experiment at Fermilab - EXA2017

from B. Casey, FNAL 57

Muon g-2 SM test uncertainties summary

Quantity	$\begin{array}{c} \text{Uncertainty} \\ \times 10^{-11} \end{array}$	$\delta a_\mu/a_\mu$ (ppb)
ω_{a} statistical	53	458
ω_{a} systematic	24	210
$\tilde{\omega}_p$ systematic	20	170
CODATA m_{μ}/m_{e}	2.6	22
CODATA μ_p/μ_e	0.35	3
Electron g factor, g_e	0.000035	0.0003
QED	0.08	0.7
EW	1	8.6
hadLBL	26	223
hadLO	33	280
hadNLO	0.9	7.6
hadNNLO	0.1	0.86

Statistical uncertainty

• fit $N_e(E_e > E_{thr}) = N_0(E_{thr})e^{-t/\gamma\tau}[1 + A(E_{thr})\cos(\omega_a t + \phi(E_{thr}))]$

• $\frac{\delta \omega_a}{\omega_a} = \frac{1}{\omega_a \gamma \tau_\mu} \sqrt{\frac{2}{NA^2 P^2}}$ N = number of muons, P = muon polarization, A = asymmetry

- improves with B field since $\omega_a \propto B$
- improves with number of muons, asymmetry, polarization
- improves with muon momentum (γ)

Systematic		E821 [ppb]
uncertainty	detector gain variation	120
	event pileup	80
	lost muons	90
	coherent betatron oscillations	70
	electric-field and pitch corrections	50

Reduce statistical $\delta \omega_a$ from 458 ppb to 100 ppb

u just need 21 times more muons, $1.5 \cdot 10^{11}$

Item	Estimate
Protons per fill on target	10 ¹² p
Positive-charged secondaries with $dp/p = \pm 2\%$	4.8×10^{7}
π^+ fraction of secondaries	0.48
π^+ flux entering FODO decay line	$> 2 \times 10^7$
Pion decay to muons in 220 m of M2/M3 line	0.72
Muon capture fraction with $dp/p < \pm 0.5\%$	0.0036
Muon survive decay 1800 m to storage ring	0.90
Muons flux at inflector entrance (per fill)	4.7×10^4
Transmission and storage using $(dp/p)_{\mu} = \pm 0.5\%$	0.10 ± 0.04
Stored muons per fill	$(4.7 \pm 1.9) \times 10^3$
Positrons accepted per fill (factors 0.15 x 0.63)	444 ± 180
Number of fills for 1.8×10^{11} events	$(4.1 \pm 1.7) \times 10^8$ fills
Time to collect statistics	(13 ± 5) months
Beam-on commissioning	2 months
Dedicated systematic studies periods	2 months
Net running time required	17 ± 5 months

Reduce systematic $\delta \tilde{\omega}_p$ from 170 ppb to 70 ppb

Category	E821	Main E989 Improvement Plans	Goal	
	[ppb]		[ppb]	
Absolute field calibration	50	Improved T stability and monitoring, precision tests in MRI	35	
		solenoid with thermal enclosure, new improved calibration		
		probes		
Trolley probe calibrations	90	3-axis motion of plunging probe, higher accuracy position de-	30	
		termination by physical stops/optical methods, more frequent		
		calibration, smaller field gradients, smaller abs cal probe to		
		calibrate all trolley probes		
Trolley measurements of B_0	50	Reduced/measured rail irregularities; reduced position uncer-	30	
		tainty by factor of 2; stabilized magnet field during measure-		
		ments; smaller field gradients		
Fixed probe interpolation	70	Better temp, stability of the magnet, more frequent trolley	30	
		runs more fixed probes		
Muon distribution	30	Improved field uniformity, improved much tracking	10	
External fields	50	Measure external fields: active feedback	5	
Othors t	100	Improved trolley newer supply: calibrate and reduce temper	30	
others	100	ature effects on trollow measure kicker field transients, mea	30	
		ature effects on trolley, measure kicker field transients, mea-		
Teles	170	sure/reduce O ₂ and image effects	70	
lotal syst. unc. on ω_p	170		70	

What monsters might there be? SUSY

- The Higgs mass has now been measured at the LHC (and predicted long before that due to precision electroweak fits) to be ~125 GeV
- Theoretically, expectation is that the Higgs should acquire a much heavier mass from loops with heavy SM particles, e.g. top quark
 - Supersymmetry postulates a new class of particles who can enter the loops and effectively cancel the

$$a_{\mu}(SUSY) pprox (\mathrm{sgn}\mu) 130 imes 10^{-11} an eta \left(rac{100 \mathrm{GeV}}{ ilde{m}}
ight)^2$$

- Complementary to direct searches at the LHC
 - Sensitive to sgn μ and tan β
 - Contributions to g-2 arise from charginos and sleptons while LHC direct searches are most sensitive to squarks and gluinos

1000 hris Polly, Boulder Colloquium, 22 April

What monsters might there be? Dark Matter

- Through cosmological observations, e.g. galaxy rotation curves, lensing, there appears to be much more mass in the universe than expected
- Many theories arising to explain the dark matter
- One example is the dark photon, which is a new U(1) gauge symmetry that would weakly couple standard model particles to $\frac{1}{\mu^+}$

 $\gamma \sim (x) \sim A'$

- Dark photon can also impact the magnetic moment of the muon
- Many search underway for direct production