Status of Mu2e Experiment

S. Giovannella (INFN LNF) on behalf of the Mu2e Collaboration

Workshop on "Flavor changing and conserving processes" Capri, 7-9 September 2017

Outline

- X Charge Lepton Flavor Violation
- X Mu2e experimental technique
- X Detector layout
- X Status of the experiment
- **X** Conclusions

Charge Lepton Flavor Violation

- **X** CLFV processes strongly suppressed in Standard Model
 - \checkmark in principle, not forbidden due to neutrino oscillation
 - ✓ in practice, negligible (rate ~ $\Delta M_v^4/M_W^4$ <10⁻⁵⁰)

- $e^{\frac{\mu}{2} \frac{\nu_{\mu}}{2} \frac{\nu_{e}}{2} \frac{e}{q}}$
- X Broad array of New Physics models predict rates observable at next generation CLFV experiments

an observation is unambiguous evidence of beyond-the-standardmodel New Physics

Process	Current Limit	Next Generation exp
τ → μη	BR < 6.5 E-8	
$\tau \rightarrow \mu \gamma$	BR < 6.8 E-8	10 ⁻⁹ - 10 ⁻¹⁰ (Belle II)
τ → μμμ	BR < 3.2 E-8	
$\tau \rightarrow eee$	BR < 3.6 E-8	
$K_L \rightarrow e\mu$	BR < 4.7 E-12	
$K^+ \rightarrow \pi^+ e^- \mu^+$	BR < 1.3 E-11	
B⁰ → eµ	BR < 7.8 E-8	
B⁺ → K⁺eµ	BR < 9.1 E-8	
$\mu^+ \rightarrow e^+ \gamma$	BR < 4.2 E-13	10 ⁻¹⁴ (MEG)
μ⁺ → e⁺e⁺e⁻	BR < 1.0 E-12	10 ⁻¹⁶ (PSI)
μN → eN	R _{μe} < 7.0 E-13	10 ⁻¹⁷ (Mu2e, COMET)

Most promising CLFV measurements use muons:

- clean topologies
- Iarge rates

Mu2e: muon-to-electron conversion in the field of a nucleus

History of CLFV with muons

Mu2e aims to improve by a factor 10⁴ the present best limit

е

Contributions to $\mu N \rightarrow eN$

Effective CLFV Lagrangian:

$$L_{CLFV} = \underbrace{\frac{m_{\mu}}{(\kappa+1)\Lambda^{2}}\bar{\mu}_{R}\sigma_{\mu\nu}e_{L}F^{\mu\nu}}_{(\kappa+1)\Lambda^{2}} + \underbrace{\frac{\kappa}{(1+\kappa)\Lambda^{2}}\bar{\mu}_{L}\gamma_{\mu}e_{L}(\bar{u}_{L}\gamma^{\mu}u_{L} + \bar{d}_{L}\gamma^{\mu}d_{L})}_{(1+\kappa)\Lambda^{2}}$$
Heavy Neutrinos Second Higgs Doublet Supersymmetry
$$|U_{\mu N}U_{e N}|^{2} \sim 8 \times 10^{-13} \qquad g(H_{\mu e}) \sim 10^{4}g(H_{\mu \mu}) \qquad rate \sim 10^{-15} \qquad Models which can be probed also by \\\mu \rightarrow e_{Y} searches$$
Heavy Z'
Anomal. Z Coupling
$$M_{Z'} = 3000 \text{ TeV}/c^{2} \qquad \mu^{\prime} \qquad e^{e^{i}} \qquad \mu^{\prime} \qquad A_{e} \sim 3000 \text{ TeV}$$

$$\mu^{\prime} = \frac{1}{\gamma_{r}Z,Z'} \qquad e^{e^{i}} \qquad \mu^{\prime} = \frac{1}{q} \qquad e^{e^{i}} \qquad \mu^{\prime} = \frac{1}{q} \qquad A_{e} \sim 3000 \text{ TeV}/c^{2}$$
Test of Physics BSM: Marciano, Mori, and Roney, Ann. Rev. Nucl. Sci. 58 M. Raidal *et al*, Eur.Phys.J.C57:13-182,2008
$$M_{L}a = \frac{1}{q} \qquad \mu^{\prime} \rightarrow e^{i} \text{ Supersymmetry}$$

$$\mu^{\prime} = \frac{1}{q} \qquad \mu^{\prime} = \frac{1}{q} \qquad \mu^{\prime}$$

S.Giovannella – Status of Mu2e Experiment – 9 September 2017

A. de Gouvêa, P. Vogel, arXiv:1303.4097

5

Mu2e physics reach

Experimental technique

CLFV@Mu2e: coherent neutrinoless conversion of a muon to an electron in the field of a nucleus: $\mu^- AI \rightarrow e^- AI$

Experimental technique:

- X Beam of low momentum muons
- X Muons stopped in Al target
- X Muons trapped in orbit around the nucleus

Mu2e sensitivity

X Design goal: single-event-sensitivity of 3×10^{-17}

Requires - 10¹⁸ stopped muons
 10²⁰ protons on target

high background suppression (N_{bckg}<0.5)

- ✗ Expected limit: R_µ < 6.1×10⁻¹⁷ @ 90% CL
 ➢ Factor 10⁴ improvement
- **X** Discovery reach (5 σ): $R_{\mu e} > 1.9 \times 10^{-16}$
 - Covers broad range of new physics theories

in 3 years running

Maximizing muons

- World's hottest muon source: 8 GeV, 8 kW proton beam on a tungsten target
- X Soft pions confined with a solenoidal B field
- Strong gradient to increase the yield through magnetic reflection

Mu2e will reuse much of the Tevatron antiproton complex to produce muons:

- ➢ 8 GeV protons from the Booster
- Recycler divides proton batches into 4 smaller bunches
- Delivery ring gets 1 out of 4 bunches from recycler
- Mu2e gets the proton beam every 1695 ns

Minimizing prompt background

Prompt background arise from interactions which occur at the stopping target:

X Radiative Pion Capture (τ_{π}^{AI} = 26 ns)

$$\pi^- N \to \gamma N^* \to e^+ e^- N^*$$

- **X** μ/π decay in flight
- Narrow pulsed proton beam
- > Delayed signal window starting 700 ns after the initial proton pulse
- > Out-of-time protons suppressed by $O(10^{10})$

Pion bckg reduced by >10⁻⁹

The Mu2e Experiment

Not shown: cosmic ray veto system, extinction monitor, target monitor

DIO background

One of two Mu2e main bckg: **Decay In Orbit** $\mu N \rightarrow e v_{\mu} v_{e} N$ (~39% on Al)

- ✗ Nuclear modifications push DIO spectrum near conversion e⁻
- DIO and CLFV signal, Conversion Electron (CE), overlap after energy loss and detector resolution

- 1. Minimize scattering, E_{loss}
- 2. High resolution spectrometer
- 3. Inner 38 cm un-instrumented:
 - X Blind to beam flash (low momentum particles)
 - ✗ Blind to 99% of DIOs

e

The Tracker

Detector requirements:

- 1. Small amount of X₀
- 2. σ_{p} < 180 keV @ 105 MeV
- 3. Good rate capability:
 - 20 kHz/cm² in live window
 - Beam flash of 3 MHz/cm²
- 4. dE/dx capability to distinguish $e^{-/p}$
- 5. Operate in B = 1 T, 10^{-4} Torr vacuum
- 6. Maximize/minimize acceptance for CE/DIO

Low mass straw drift tubes design:

- 5 mm diameter, 33 117 cm length
- 15 μm Mylar wall, 25 μm Au-plated W wire
- 80:20 Ar:CO₂ @ 1 atm
- Dual-ended readout

Tracker Station: 2 rotated planes

Tracker:18 stations (>20k tubes)

Tracker Performances

Full simulation

X Well within physics requirements

- X Robust against increases in rate
- Inefficiency dominated by geometric acceptance

Cosmics, 8 channel prototype

е

Panel Prototype

- X First pre-production prototype, with final design, recently built and being tested
- X Orders placed for final production
- **X** FEE prototypes tested successfully
- X Vertical slice test to be performed on fully instrumented panels with entire FEE chain

The Electromagnetic Calorimeter

Calorimeter provides confirmation for CE and other crucial functions:

- **X** PID: e/μ separation
- **X** EMC seeded track finder
- X Standalone trigger

Requirements:

- $\sigma_{\rm E}/{\rm E} = \mathcal{O}(5\%)$ for CE
- σ_T < 500 ps for CE
- σ_{X,Y} ≤ 1 cm
- High acceptance for CE

- Fast (τ<40 ns)
- Operate in 1T and 10⁻⁴ Torr
- Redundancy in readout
- Radiation hard: 90 krad photons and 3×10¹² n/cm²

EMC Design:

- **X** Two disks, R_{in} =374 mm, R_{out} =660 mm, 10X₀ length, ~ 75 cm separation
- 674+674 square x-sec pure Csl crystals, (34×34×200) mm³
- For each crystal, two custom array (2×3 of 6×6 mm²) large area UV-extended SiPMs
- X Analog FEE directly mounted on SiPM
- Calibration/Monitoring with 6 MeV radioactive source and a laser system

Disks spaced by $\frac{1}{2} \lambda$ of the helix (min-max distance from axis) for CE tracks

Calorimeter Performances

- ✗ Small prototype tested @ BTF (Frascati) in April 2015, 80–120 MeV e⁻
- X 3×3 array of (30×30×200) mm² undoped CsI crystals coupled to Hamamatsu MPPC
- A DAQ readout: 250 Msps CAEN V1720
 Wave Form Digitizer

S.Giovannella – Status of Mu2e Experiment – 9 September 2017

P05007

EMC pre-production

- 3×24 pre-production crystals from three different vendors X
 - Optical properties tested for all, irradiation test for six crystals up to 100 krad
- 3×50 pre-production SiPMs from three different vendors X
- Procurement already started > 3×35 characterized, irradiation test for three SiPMs up to 8.5×10¹¹ n_{1MeVeq} /cm², MTTF ≥ 6×10⁵ hours
- Large EMC prototype (51 crystals, 102 SiPMs, 102 FEE boards) with pre-X productions and mechanics cooling systems similar to the final ones
 - \blacktriangleright Test of integration and assembly procedures, test beam with 60-120 MeV e^{-1}

Cosmic Ray Veto

Cosmic ray muons will produce one fake signal event per day without a CRV. The muon itself can fake a 105 MeV e^- or it can knock out an e^-

- High efficiency (0.9999) veto needed
- Four layers of extruded plastic scintillator, (5×2) cm²
- 2 WLS fibers (1.4 mm diameter) + (2×2) mm² SiPM readout
- ³⁄₄ layers hit: 125 ns veto

Cosmic Ray Veto

MC well describes test beam data

Test beam results with beam centered on counter 1 m from readout end

- X The single-plane requirement is ε > 99.5%
 ⇒ yield of 66 photo-electrons at 1 m from readout end
- X Test beam results give 92 photo-electrons: safety factor of ~ 40%.

20

Mu2e signal event

Signal electron, together with all the other "stuff" occurring simultaneously, integrated over 500-1695 ns window

Expectation with full simulation

Discovery sensitivity accomplished with three years of running and suppressing backgrounds to < 0.4 event total (50% cosmics, 35% DIOs)

R_{μe} < 8 × 10⁻¹⁷ @ 90% C.L.

22

Civil construction completed

Fermilab Muon Campus:

Two new experimental halls and the associated beamlines
Will produce world's highest intensity muon beams
First beam delivered in 2017 (Muon g-2)

Mu2e

Schedule

S.Giovannella – Status of Mu2e Experiment – 9 September 2017

e

Conclusions

The Mu2e experiment will exploit the world's highest intensity muon beams of the Fermilab Muon Campus to search for CLFV

- X Current sensitivity will be improved by a factor 10⁴
- **X** Discovery capability over a wide range of New Physics models
- X Complementarity with LHC, heavy flavor, dark matter and neutrino experiments
- *X* Production phase is starting, moving to full regime for end 2017
- X Detector installation in 2020, followed by Mu2e commissioning and data

Mu2e Solenoids

- X 75 km of superconducting cable procured and tested
- X Solenoid design completed
- X TS fabrication has begun at ASG Superconducting in Genova (Italy)
- X PS, DS fabrication started at General Atomic (USA)

CLFV

Standard Model $\mu \rightarrow e$ conversion

W. Altmannshofer, et al, arxiv:0909.1333 [hep-ph]

If SUSY seen at LHC \rightarrow rate ${\rm \sim}10^{\rm -15}$

Implies O(40) reconstructed signal events with negligible background in Mu2e for many SUSY models.

Mu2e keeps discovery sensitivity for all SUSY benchmark point for LHC Phase2

Background

Category	Background Process	Estimated Yield
Intrinsic (scale with number)	Decay In Orbit (DIO) Muon Capture (RMC)	0.144 ± 0.028(stat) ± 0.11(syst) 0
Late Arriving (scale with number of late protons)	Pion Capture (RPC) Muon Decay in Flight Pion Decay in Flight Beam Electrons	$0.021 \pm 0.001(stat) \pm 0.002(syst)$ < 0.003 $0.001 \pm < 0.001$ $(2.1 \pm 1.0) \times 10^{-4}$
Miscellaneous	Cosmic Ray Induced Antiproton Induced	0.209 ± 0.022(stat) ± 0.055(syst) 0.040 ± 0.001(stat) ± 0.020(syst)
Total		0.41 ± 0.13(stat + syst)

Track reconstruction and selection

Tracker Performances

Expected tracker performances from full simulation

Nominal

Flash₂

Variations in accidental hit rate

- Ven within physics requirements
 Debugt successing the second second
- X Robust against increases in rate
- Inefficiency dominated by geometric acceptance

Protonsx2 Neutronsx2 Photonsx1.5 OOT u x2

30

Straw leak test

Two methods:

CO₂ permeation

>100 straw/day: do every straw Needs cross calibration

• Vacuum

Absolute measurement

~ 1 per day (sample of straws)

Agrees within uncertainty in correcting for difference in diffusion of Argon vs CO₂

Straw leak test

- The full tracker leak rate limit is 6 cm³/min.
 - many possible sources
 - individual straw leak limit is 9.6 x 10⁻⁵ cm³/ min
 - 124 straws tested at FNAL last summer;121 passed

Panel leak test

Large vacuum vessel to test 6 panels per day

Calorimeter: e/µ separation

With a CRV inefficiency of 10^{-4} an additional rejection factor of ~ 200 is needed to have < 0.1 fake events from cosmics in the signal window

6000

Sources Entries

4000

3000

2000

1000

0.2

0.4

0.6

- 105 MeV/c e⁻ are ultra-relativistic, while 105 MeV/c μ have β ~ 0.7 and a kinetic energy of ~ 40 MeV
- Likelihood rejection combines

 $\Delta t = t_{track} - t_{cluster}$ and E/p:

$$\ln L_{e,\mu} = \ln P_{e,\mu}(\Delta t) + \ln P_{e,\mu}(E/p)$$

A rejection factor of 200 can be achieved with ~ 95% efficiency for CE

S.Giovannella – Status of Mu2e Experiment – 9 September 2017

1.2 E/p

0.8

Calorimeter seeded track finder

 Cluster time and position are used for filtering the straw hits: ✓ time window of ~ 80 ns ✓ spatial correlation calorimeter selection

no selection

green line = CE track

Calorimeter radiation damage

- Calorimeter radiation dose driven by beam flash (interaction of proton beam on target)
- Dose from muon capture is x10 smaller
- Dose is mainly in the inner radius
- Highest dose ~10 krad/year
- Highest n flux on crystals ~ 2×10¹¹ n/cm²/year
- Highest n flux on SiPM ~ 10¹¹ n_{1MeVeq}/cm²/year

Calorimeter calibration

- Liquid source FC 770 + DT generator: 6 MeV + 2 escape peaks
- Laser system to monitor SiPM performance

Laser system - test station

37

Calorimeter simulation

- Offline simulation including background hits
- Experimental effects included: longitudinal response uniformity (LRU), electronic noise, digitization, etc
- Waveform-based analysis to improve pileup separation

Test of pre-production crystals

- **✗** 3×24 pre-production crystals from three different vendors
- **X** Optical properties tested with 511 keV γ 's along the crystal axis
- $\pmb{\mathsf{X}}$ Crystals are wrapped with 150 μm of Tyvek and coupled to an UV-extended PMT

S.Giovannella – Status of Mu2e Experiment – 9 September 2017

е

Test of pre-production SiPMs

- ✗ 3×50 Mu2e pre-production SiPMs from three different vendors
- X 3×35 were characterized, all six cells in the array

S.Giovannella – Status of Mu2e Experiment – 9 September 2017

e

The COMET Experiment

phase I

phase II

41

The Muon Campus at Fermilab

Muon (g-2)

Mu2e

The Mu2e Collaboration Over 200 scientists from 37 institutions

1111