

The Fermilab Muon g-2 experiment: laser calibration system

M. Karuza University of Rijeka and INFN Sezione di Trieste

on behalf Muon g-2 Collaboration

The Fermilab Muon g-2 experiment: laser calibration system

- physics
- challanges
- calibration system
- schedule

Physics

3.5 sigma discrepancy between SM and experiment

Challenges - Logistic (summer 2013)

23 of the Biggest Machines Ever Moved On Wheels No. 5 Muon storage ring

Challenges - Engineering

Environmental

2'9" heavily-reinforced floor installed on 12' deep excavation of undisturbed soil Temperature control to +/- 1C

Construction tolerances

26 ton pieces of yoke steel (30 of them) placed to 125 micron tolerance

Pole pieces aligned to 25 micron

TD:FNAL FEM 2D simulation of the G-2 experiment Lambertson Magnet

Muon g-2 magnet successfully cooled down and powered up (April 2015)

Magnet achieved full power September 21, 2015 Field started out with a peak variation of 1400 ppm June 2016 peak to peak variation was reduced to 200 ppm The goal of shimming is 50 ppm with a muon weighted systematic uncertainty of 70 ppb BNL achieved 100 ppm with an averaged field uniformity of +- 1ppm. They estimated their systematic uncertainty of 140 ppb. We would like to improve of a factor 2!

Challenges - Engineering

Chris Polly : Major success! Inflector is operational 17.01.2017 Vacuum chamber celebration this Friday 25.01.2017

Hi all,

We quietly hit a major milestone yesterday as the final vacuum chamber was installed in the magnet gap. We consider this a pivotal point in the project because we can now begin the final construction phase where every detector, field, and injection device that interfaces with the chambers can now proceed with installation.

This represents the culmination of dozens of FTE*years of work if you think about all of the pieces that had to come together from the design to the final product, including...

- inflector connections
- quadruple refurbishment and alignment
- new kicker plates
- new Q1 mylar plates
- machining to accomodate trackers
- reconstructing the E821 tracker chamber to house the new calibration platform
- extensive cage and trolley rail alignment to meet demanding specifications
- bar code markings and reader
- automated, newly designed collimators
- fixed NMR probes

...and finally, the installation of the chambers themselves.

Challenges - Measurement

Measure anomalous precession frequency

 $\omega_a = a_\mu \frac{eB}{m}$

Need magnetic field value - proton precession frequency

 $a_{\mu} = \frac{\frac{\omega_a}{\omega_p}}{\lambda - \frac{\omega_a}{\omega_p}}$

 λ muon-to-proton magnetic moment ratio

Challenges - Measurement

Category	E821	Main E989 Improvement Plans	Goal
	[ppb]	-	[ppb]
Absolute field calibra-	50	Special 1.45 T calibration magnet	35
tion		with thermal enclosure; additional	
		probes; better electronics	
Trolley probe calibra-	90	Plunging probes that can cross cal-	30
tions		ibrate off-central probes; better po-	
		sition accuracy by physical stops	
		and/or optical survey; more frequent	
		calibrations	
Trolley measurements	50	Reduced position uncertainty by fac-	30
of B_0		tor of 2; improved rail irregularities;	
		stabilized magnet field during mea-	
		surements [*]	
Fixed probe interpola-	70	Better temperature stability of the	30
tion		magnet; more frequent trolley runs	
Muon distribution	30	Additional probes at larger radii;	10
		improved field uniformity; improved	
		muon tracking	
Time-dependent exter-	_	Direct measurement of external	5
nal magnetic fields		fields; simulations of impact; active	
	100	feedback	20
Others †	100	Improved trolley power supply; trol-	30
		ley probes extended to larger radii;	
		reduced temperature effects on trol-	
Tetal sustain stin survey	170	iey; measure kicker field transients	70
Total systematic error	170		10
on ω_p			

Category	E821	E989 Improvement Plans	Goal
	[ppb]		[ppb]
Gain changes	120	Better laser calibration	
		low-energy threshold	20
Pileup	80	Low-energy samples recorded	
		calorimeter segmentation	40
Lost muons	90	Better collimation in ring	20
CBO	70	Higher n value (frequency)	
		Better match of beamline to ring	< 30
E and pitch	50	Improved tracker	
		Precise storage ring simulations	30
Total	180	Quadrature sum	70

 $- \omega_p$

 ω_a

Calibration system

Calorimeters (54 crystals) --> 24 stations --> ~ 1300 channels --> design light distibution system that sends a calibration pulse to every channel

- --> each pulse ~the same intensity
- --> each pulse in time equal to others --> stability
- --> absolute light intensity (Am source --> SOURCE MONITOR)
- --> control of the distribution chain (LOCAL MONITOR)

Photoelectron response calibration:

The photon detection efficiency of the SiPM must be calibrated.

We send laser pulses at high rate, with different intensity (filter wheel).

Gain calibration (short and long term):

SiPM gain is not stable, it depends on m rate, bias voltage and temperature. We send a reference laser pulse (known energy) to each photosensor in/out of fill, during the data taking (procedure to be defined).

A. Anastasi et al, Electron beam test of key elements of the laser-based calibration system for the muon g-2 experiment, NIM A

Calibration system Optical table detail

Detectors

- SM PIN 1-
- SM PIN 2_
- SM PMT -
- Additional
 PIN
- Minibundle to LM PM

Calibration system Inside laser hut

- 3 SMs
- Minibundle
- LM1 (for now)

Courtsey: D. Cauz

Calibration system Inside ring

Calibration system Diffuser boxes

Marin Karuza, University of Rijeka and INFN Trieste

Updated schedule

Targets:

- Complete 23 calorimeter by December
- Complete 25 calorimeters by January
- Turn on lasers by mid December
- Monitors by January/February
- Working system by February
- Full system by May

	Dec 16	Jan 17	Feb	March	April	May
23 Panels						
6 spare panels+prisms						
25 bundles						
3 spare bundles						
25 boxes + diffusers						
23 Assembled boxes						
25 Assembled boxes						
Optical comp laser hut						
Optical fibers						
Source monitor HW						
Local monitor HW						
Local monitor boards I						
uTCA						
HV+LV supply						
Source monitor boards						
Local monitor boards II						

slide : C. Ferrari

Schedule

The experiment is on schedule.

Conclusion

- the experiment is following the schedule
- all systems are completed or close to completion
- the calibration system is performing well

(test beam results)

- will be ready in a few weeks (LM final assembly)
- looking forward for the first data

Backup

