Design, status and perspective of the Mu2e crystal calorimeter

Gianantonio Pezzullo INFN of Pisa

on behalf of the Mu2e calorimeter group

I

- The Mu2e experiment
- Calorimeter design
- The role of the calorimeter in Mu2e
- R&D
- Conclusion

The Mu2e collaboration

Argonne National Laboratory, Boston University, Brookhaven National Laboratory University of California, Berkeley, University of California, Irvine, California Institute of Technology, City University of New York, Joint Institute for Nuclear Research, Dubna, Duke University, Fermi National Accelerator Laboratory, Laboratori Nazionali di Frascati, Helmholtz-Zentrum Dresden-Rossendorf, University of Houston, University of Illinois, INFN Genova, Kansas State University, Lawrence Berkeley National Laboratory, INFN Lecce and Università del Salento, Lewis University, University of Louisville, Laboratori Nazionali di Frascati and Università Marconi Roma, University of Minnesota, Muons Inc., Northern Illinois University, Northwestern University, Novosibirsk State University/Budker Institute of Nuclear Physics, Institute for Nuclear Research, Moscow, INFN Pisa, Purdue University, Rice University, University of South Alabama, Sun Yat Sen University, University of Virginia, University of Washington, Yale University

What is $\mu \rightarrow e$ conversion

• μ converts to an electron in the presence of a nucleus $\mu^- N
ightarrow e^- N$

$$E_e = m_{\mu} c^2 - B_{\mu}(Z) - C(A) = 104.973 MeV$$

- for Aluminum: $\begin{cases} B_{\mu}(Z) \text{ is the muon binding energy (0.48 MeV)} \\ C(A) \text{ is the nuclear recoil energy (0.21 MeV)} \end{cases}$
- μ conversion in the SM is induced by neutrino masses and mixing at a negligible level ~ 10⁻⁵²
- Many SM extensions enhance the rate through mixing in the high energy sector of the theory (other particles in the loop...)

• Mu2e will improve by a factor 10^4 the present best limit!

N F N

Experimental setup

(I) Production Solenoid:

Proton beam strikes target, producing mostly pions

Graded magnetic field contains backwards pions/muons and reflects slow forward pions/muons

(3) Detector Solenoid:

- ➡ Capture muons on Al target
- Measure momentum in tracker and energy in calorimeter
- ➡ Graded field "reflects" downstream conversion electrons emitted upstream

Calorimeter design

- 2 disks; each disk contains 678 undoped CsI crystals $20 \times 3.4 \times 3.4$ cm³
- Disk separation ~ 75 cm
- Inner/outer radii: 37.4/66 cm
- Crystal choice: undoped Csl provides light yield (LY) > 100 pe/MeV, longitudinal response uniformity
 - < 10%, emission decay time $\tau \sim$ 16 ns
- Photosensor choice: custom array 2x3 of 6x6 mm² UV-extended SiPM

undoped CsI

Amerys C0013	S-G C0045	SIC C0037
Amerys C0015	S-G C0046	SIC C0038
Amcrys C0016	S-G C0048	SIC C0039
Amerys C0019	S-G C0049	SIC C0040
Amerys C0023	S-G C0051	SIC C0041
Amerys C0025	S-G-C0057	SIC C0042
Amerys C0026	S-G C0058	SIC C0043
Amerys C0027	S-G C0060	SIC C0068
Amcrys C0030	S-G C0062	SIC C0070
Amerys C0032	S-G C0063	SIC C0071
Amcrys C0034	S-G C0065	SIC C0072
Amerys C0036	S-G C0066	SIC C0073

(R. Y. Zhu talk)

SiPM array + FEE

Calibration methods

- Liquid source FC 770 + DT generator: 6 MeV + 2 escape peaks
- Laser system to monitor SiPM performance

Laser system - test station

TIPP'17 - May 22 2017

Radiation Environment

• High level of dose impact on Si devices and crystals performance

Simulation results

- Offline simulation including background hits
- Experimental effects included: longitudinal response uniformity (LRU), electronic noise, digitization, etc
- Waveform-based analysis to improve pileup separation

PID: e/µ separation

- I05 MeV/c e⁻ are ultra-relativistic, while
 I05 MeV/c μ have β~ 0.7 and a kinetic energy of ~ 40 MeV
- Likelihood rejection combines $\Delta t = t_{track} - t_{cluster}$ and E/p:

 $\ln L_{e,\mu} = \ln P_{e,\mu}(\Delta t) + \ln P_{e,\mu}(E/p)$

µ mimicking the CE

Calo seeded track finder

calorimeter selection

- Cluster time and position are used for filtering the straw hits:
 ✓ time window of ~ 80 ns
 - \checkmark spatial correlation

no selection

green line = CE track

G. Pezzullo (INFN of Pisa)

Calorimeter trigger

- Calo info can provide additional trigger capabilities in Mu2e:
- Calorimeter seeded track finder:
 - \checkmark factorized into 3 steps: hit pre-selection, helix search and track fit
 - ✓ ϵ ~95% for a background rejection of 200
- Standalone calorimeter trigger that uses only calo info:

✓ ϵ ~65% for a background rejection of 200

Test with small prototype

- Small prototype tested @ the BTF in Frascati during April 2015
- Array 3 x 3 with undoped CsI 3 x 3 x 20 cm³ coupled with Hamamatsu MPPC
- All channels were read out with the 12 bit 250 Msps waveform digitizer board V1720

New prototype

- Large prototype: 51 crystals + 102 SiPM + 102 FEE boards
- Mechanics and cooling system similar to the final ones
- Beam test successfully performed on 4-14 May 2017 @ BTF in Frascati using e⁻ beam in the range [60, 120] MeV
- Energy & timing resolution studied @ normal and 50 deg incidence
- Analysis is underway

Conclusions

- The Mu2e calorimeter has been designed to:
 - \checkmark operate in a very harsh environment (high γ and neutron dose)
 - ✓ provide background rejection capabilities via PID
 - ✓ make the track search more robust against background occupancy
 - ✓ triggering capabilities
- R&D steps well defined
 - ✓ pre-production of crystals and SiPM already started
 - ✓ QA processes of the main components already established
 - \checkmark large-scale prototype built and already under test using e⁻ beam

backup slides

Muonic atom life times

NFN

 $R_{\mu e}$ rate vs Z

Mu2e signal?

- A next-generation Mu2e experiment makes sense in all scenarios:
 - \checkmark Push sensitivity or
 - ✓ Study underlying new physics
 - ✓ Will need more protons upgrade accelerator
 - ✓ Snowmass white paper, arXiv:1307.116

Model independent Lagrangian

$$L_{\rm CLFV} = \frac{m_{\mu}}{(\kappa+1)\Lambda^2} \bar{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \frac{\kappa}{(\kappa+1)\Lambda^2} \bar{\mu}_L \gamma_{\mu} e_L \left(\bar{e}\gamma^{\mu}e\right)$$

"dipole term"

"contact term"

G. Pezzullo (INFN of Pisa)

TIPP'17 - May 22 2017

NFN

CLFV limits I

Process	Upper limit		
$\mu^+ \to e^+ \gamma$	$< 5.7 \times 10^{-13}$		
$\mu^+ \to e^+ e^- e^+$	$< 1.0 \times 10^{-12}$		
$\mu^{-}\mathrm{Ti} \rightarrow e^{-}\mathrm{Ti}$	$< 1.7 \times 10^{-12}$		
$\mu^{-}\mathrm{Au} \rightarrow e^{-}\mathrm{Au}$	$< 7 \times 10^{-13}$		
$\mu^+ e^- \to \mu^- e^+$	$< 3.0 \times 10^{-13}$		
$\tau \to e \gamma$	$< 3.3 \times 10^{-8}$		
$\tau^- o \mu \gamma$	$< 4.4 \times 10^{-8}$		
$\tau^- \rightarrow e^- e^+ e^-$	$< 2.7 \times 10^{-8}$		
$\tau^- \to \mu^- \mu^+ \mu^-$	$< 2.1 \times 10^{-8}$		
$\tau^- \to e^- \mu^+ \mu^-$	$< 2.7 \times 10^{-8}$		
$\tau^- ightarrow \mu^- e^+ e^-$	$< 1.8 \times 10^{-8}$		
$\tau^- \to e^+ \mu^- \mu^-$	$< 1.7 \times 10^{-8}$		
$\tau^- \to \mu^+ e^- e^-$	$< 1.5 \times 10^{-8}$		

CLFV limits 2

Process	Upper limit
$\pi^0 \to \mu e$	$< 8.6 \times 10^{-9}$
$\mathrm{K}^{0}_{\mathrm{L}} \to \mu e$	$< 4.7 \times 10^{-12}$
$[\mathbf{K}^+ \to \pi^+ \mu^+ e^-]$	$< 2.1 \times 10^{-10}$
$\mathrm{K}^{0}_{\mathrm{L}} \to \pi^{0} \mu^{+} e^{-}$	$< 4.4 \times 10^{-10}$
$Z^0 \to \mu e$	$< 1.7 \times 10^{-6}$
$Z^0 \to \tau e$	$< 9.8 \times 10^{-6}$
$Z^0 \to \tau \mu$	$< 1.2 \times 10^{-6}$

Out-of-time protons

- The RF structure of the Recycler provides some "intrinsic" extinction:
 ✓ Intrinsic extinction ~10⁻⁵
- A custom-made AC dipole placed just upstream of the production solenoid provides additional extinction:
 - \checkmark AC dipole extinction ~ 10⁻⁶ 10⁻⁷
- Together they provide a total extinction:
 ✓ Total extinction ~ 10⁻¹¹ 10⁻¹²
- Extinction measured using a detector system: Si-pixel + sampling EMC

COMET experiment

phase I

phase II

Crystals properties

Crystal	\mathbf{BaF}_2	LYSO	CsI
Density $[g/cm^3]$	4.89	7.28	4.51
Radiation length [cm] X_0	2.03	1.14	1.86
Molière radius [cm] R _m	3.10	2.07	3.57
Interaction length [cm]	30.7	20.9	39.3
dE/dx [MeV/cm]	6.5	10.0	5.56
Refractive Index at λ_{\max}	1.50	1.82	1.95
Peak luminescence [nm]	220,300	402	310
Decay time τ [ns]	0.9,650	40	16
Light yield (compared to $NaI(TI)$) [%]	4.1, 3.6	85	3.6
Light yield variation with	0.1, -1.9	-0.2	-1.4
temperature $[\%/^{\circ}C]$			
Hygroscopicity	Slight	None	Slight

Csl properties

 $\mathrm{EWLT} = \frac{\int \mathrm{LT}(\lambda) \mathrm{Em}(\lambda) d\lambda}{\int \mathrm{Em}(\lambda) d\lambda}$

• where $LT(\lambda)$ is the light transmittance and $Em(\lambda)$ is the emission spectrum

Csl Light Output

G. Pezzullo (INFN of Pisa)

Csl LRU

Csl rad damage

