

Searching for muon to electron conversion: the Mu2e experiment at FERMILAB

S. Miscetti Laboratori Nazionali di Frascati on behalf of the Mu2e Collaboration HZDR – 9 March 2017

- The Physics

 →CLFV processes
 →BSM Reach: Conversion exp. vs MEG-II
- Description of Muonic Atom processes
- Experimental technique
- Accelerator Complex
- Detector Layout
- Status of Mu2e experiment
- Conclusions

The Mu2e Collaboration

NFN

~230 Scientists from 37 Institutions

Argonne National Laboratory, Boston University, Brookhaven National Laboratory, University of California Berkeley, University of California Irvine, California Institute of Technology, City University of New York, Joint Institute of Nuclear Research Dubna, Duke University, Fermi National Accelerator Laboratory, Laboratori Nazionali di Frascati, University of Houston, Helmholtz-Zentrum Dresden-Rossendorf, University of Illinois, INFN Genova, Lawrence Berkeley National Laboratory, INFN Lecce, University Marconi Rome, Institute for High Energy Physics Protvino, Kansas State University, Lewis University, University of Liverpool, University College London, University of Louisville, University of Manchester, University of Minnesota, Muons Inc., Northwestern University, Institute for Nuclear Research Moscow, Northern Illinois University, INFN Pisa, Purdue University, Novosibirsk State University/Budker Institute of Nuclear Physics, Rice University, University of South Alabama, University of Virginia, University of Washington, Yale University

CLFV processes

- Muon-to-electron conversion is a charged lepton flavor violating process (CLFV) similar but complementary to other CLFV processes as $\mu \rightarrow e\gamma$ and $\mu \rightarrow 3e$.
- The Mu2e experiment searches for muon-to-electron conversion in the coulomb field of a nucleus: $\mu^{-} A I \rightarrow e^{-} A I$
- CLFV processes are strongly suppressed in the Standard Model

 \rightarrow In principle, not forbidden due to neutrino oscillations

→ In practice BR($\mu \rightarrow e\gamma$) ~ 10⁻⁵⁴ is negligible in the SM!

- New Physics could enhance CLFV rates to observable values
 - Various NP models allow for it, <u>at levels just beyond</u> current CLFV upper limits.
 - SO(10) SUSY
 - L. Calibbi et al., Phys. Rev. D 74, 116002 (2006); L. Calibbi et al., JHEP 1211, 40 (2012).
 - Scalar leptoquarks
 - J.M. Arnold et al., Phys. Rev D 88, 035009 (2013).
 - Left-right symmetric model
 - C.-H. Lee et al., Phys. ReV D 88, 093010 (2013).

Observation of CLFV is New Physics

CLFV history for muons

LOOP TERM

 $(\mu - 2)_{\mu} \quad \mu^{-} \mathcal{N} \to e^{-} \mathcal{N}$

 $R_{\mu e} = \frac{\Gamma(\mu^- + N(A, Z)) \to e^- + N(A, Z)}{\Gamma(\mu^- + N(A, Z) \to \text{ all muon capture})} \le 6 \times 10^{-17} \text{ (@90\%CL)}$ S.Miscetti @ HZDR

> erto Soleti erto Soleti

6

Mu2e physics reach & goal

If SUSY seen at LHC \rightarrow rate ~10^{-15}

Implies ~ 40-50 signal events with negligible background in Mu2e for many SUSY models.

SUSY GUT in an SO(10) framework $\mu N \rightarrow eN$ (tan β = 10)

L. Calibbi et al., hep-ph/0605139

Complementary with the LHC experiments while providing models' discrimination

Muon to electron conversion is a unique probe for BSM:

- Broad discovery sensitivity across all models:
 - \rightarrow Sensitivity to the same physics of MEG/mu3e but with better mass reach
 - \rightarrow Sensitivity to physics that MEG/mu3e are not
 - → If MEG/mu3e observe a signal, MU2E/COMET do it with improved statistics. Ratio of the BR allows to pin-down physics model
 - → If MEG/mu3e do not observe a signal, MU2E/COMET have still a reach to do so. In a long run, it can also improve further (MU2E-II) with the proton improvement plan (PIP-2)

 Sensitivity to Λ (mass scale) up to thousands of TeV beyond any current existing accelerator

Experimental Technique

i Fisica Nucleare \Box Low momentum μ beam (< 100 MeV/c) High intensity "pulsed" rate \rightarrow 10¹⁰/s muon stop on AI. target \rightarrow 1.7 µsec micro-bunch □ Formation of muonic atoms that can make a: **Muon Capture Process** Decay in Orbit (DIO) (BR=61%)(BR=39%)**Conversion Process** ²⁷AI 27AI 27 1S Orbit Nuclear Recoil Lifetime = 864ns The conversion process results in a clear signature of a single electron, CE, with a mono-energetic spectrum close $E_{e} = m_{\mu}c^{2} - (B.E.)_{1S} - E_{recoil}$ to the muon rest mass $= 104.96 \, \mathrm{MeV}$

• Design goal: single-event-sensitivity of 2.4 x 10⁻¹⁷

- Requires about 10¹⁸ stopped muons
- Requires about 10²⁰ protons on target
- Requires extreme suppression of backgrounds
- Expected limit: $R_{\mu e} < 6 \times 10^{-17} @ 90\% CL$
 - Factor 10⁴ improvement
- Discovery sensitivity: all $R_{\mu e}$ > few x 10⁻¹⁶
 - Covers broad range of new physics theories

- Intrinsic scale with number of stopped muons
 - µ Decay-in-Orbit (DIO)
 - Radiative muon capture (RMC)
- Late arriving scale with number of late protons
 - Radiative pion capture (RPC)

```
\pi^{-}N \rightarrow \gamma N', \gamma \rightarrow e^{+}e^{-} and \pi^{-}N \rightarrow e^{+}e^{-}N'
```

- μ and π decay-in-flight (DIF)
- Miscellaneous
 - Anti-proton induced

produce pions when they annihilate in the target .. antiprotons are negative and they can be slow!

Cosmic-ray induced

DIO background

□ The DIO background is the most difficult one.

Electron energy distribution from the decay of bound muons is a (modified) Michel spectrum:

→ Presence of atomic nucleus and momentum transfer create a recoil tail with a fast falling slope close to the endpoint

→ To separate DIO
 endpoint from
 CE line we need a high
 Resolution Spectrometer

Czarnecki et al., Phys. Rev. D 84, 013006 (2011) arXiv: 1106.4756v2

- Backgrounds arising from all the other interactions which occur at the production target
 - Overwhelmingly produce a prompt background when compared to τ_{μ}^{AI} = 864 ns
 - Eliminated by defining a signal timing window starting 700 ns after the initial proton pulse
 - Must eliminate out-of-time ("late") protons, which would otherwise generate these backgrounds in time with the signal window

The trick is ... muonic atomic lifetime >> prompt background

Need a pulsed beam to wait for prompt background to reach acceptable levels! Fermilab provides the beam we need !

Proton extinction between pulses \rightarrow # protons out of beam/# protons in pulse

achieving 10⁻¹⁰ is hard; normally get 10⁻² – 10⁻³

- Internal (momentum scraping) and bunch formation in Accumulator
- External: oscillating (AC) dipole
 - high frequency (300 KHz) dipole with smaller admixture of 17th harmonic (5.1 MHz)
 - Sweep Unwanted Beam into collimators

Calculations based on accelerator models that take into account collective effects Shows that this combination gets ~ 10^{-12}

Pulsed proton beam

- Narrow proton pulses (< +/- 125 ns)
- Very few out-of-time protons (< 10⁻¹⁰)
- Avoid trapping particles... B-field requirements
 - Further mitigates beam-related backgrounds

Excellent detector

- \rightarrow High CR veto efficiency (>99.99%)
- \rightarrow Excellent momentum resolution (< 200 keV core)
- \rightarrow Calorimetry for PID and track seeding
- \rightarrow Thin anti-proton annihilation window(s)

Accelerator Scheme

- Booster: batch of 4×10¹² protons every 1/15th second
- Booster "batch" is injected into the Recycler ring
- Batch is re-bunched into 4 bunches
- These are extracted one at a time to the Debuncher/Delivery ring
- As a bunch circulates, protons are extracted to produce the desired beam structure
- Produces bunches of ~3x10⁷ protons each, separated by 1.7 µs (debuncher ring period)

Muon campus: g-2/Mu2e \rightarrow reality

Mu2e – experiment layout

Muon Beam-line

Production Target / Solenoid (PS)

- 8 GeV Proton beam strikes target, producing mostly pions
- Graded magnetic field contains backwards pions/muons and reflects slow forward pions/muons

- ightarrow Heat and radiation shielding
- \rightarrow Tungsten target.

Transport Solenoid (TS)

Selects low momentum, negative muons Antiproton absorber in the mid-section

Target, Detector and Solenoid (DS)

- Capture muons on Al target
- Measure momentum in tracker and energy in calorimeter
- CRV to veto Cosmic Rays event

Protons enter opposite to outgoing muons: This is a central idea to remove prompt background

Transport Solenoid

9/3/2017

Detector Solenoid

tituto Nazionali Eisica Nuclean

Mu2e Solenoid Summary (1)

	PS	TS	DS
Length (m)	4	13	11
Diameter (m)	1.7	0.4	1.9
Field @ start (T)	4.6	2.5	2.0
Field @ end (T)	2.5	2.0	1.0
Number of coils	3	52	11
Conductor (km)	14	44	17
Operating current (kA)	10	3	6
Stored energy (MJ)	80	20	30
Cold mass (tons)	11	26	8

- PS, DS will be built by General Atomics
 - TS will be built by ASG + Fermilab

Mu2e Solenoid Summary (2)

- Designs are finalized.
- TS fabrication has begun.
- PS, DS fabrication ready to start.

Figure 7.25. TSu Cryostat Interfaces. Top: TSu-PS interface; Bottom; TSu-TSd interface.

- Tracker is made of arrays of straw drift tubes
- ~ 20000 tubes arranged in planes on stations,
- the tracker has 18 stations.

• Tracking at high radius ensures operability (beam flash produces a lot of low momentum particles, large DIO background.)

- Self-supporting "panel" consists of 96 straws, 2 layers, 48 straws/layer
- 6 panels assembled to make a "plane"
- 2 planes assembled to make a "station"
- Rotation of panels and planes improves stereo information
- >20 k straws total

Straw tube

Characteristics:

- 5mm diameter and 334-1174 mm length
- 25 μm W sense wire (gold plated) at the center
- 15 microns Mylar wall
- Must operate in vacuum
- 80/20 Ar/CO₂ with HV < 1500 V

Straw tubes

- Proven technology
- Low mass \rightarrow minimize scattering (track typically sees ~ 0.25 % X₀)
- Modular, connections outside tracking volume
- Challenge: straw wall thickness (15 μm) never done before

Starting pre-production prototype now

INFN

stituto Nazionale li Fisica Nucleare

S.Miscetti @ HZDR

8 Channel Prototype

• Measured gain, crosstalk, resolution, ...

Calorimeter System

Calorimeter requirements:

- \rightarrow Particle Identification to distinguish e/mu
- \rightarrow Seed for track pattern recognition
- \rightarrow Tracking independent trigger
- \rightarrow Work in 1 T field and 10⁻⁴ Torr vacuum
- → RadHard up to 100 krad, 10¹² n/cm²/year (test at EPOS)

Calorimeter choice:

High granularity crystal based calorimeter with:

- \rightarrow σ/E of O(5%) and Time resolution < 500 ps
- \rightarrow Position resolution of O(1 cm)
- → almost full acceptance for CE signal @ 100 MeV

Disk geometry

- Square crystals
- Charge symmetric, can measure

 $\mu^{-}N \rightarrow e^{+}N$

Two disks separated by $\frac{1}{2}$ wavelength (70 cm)

Search for tracking hits with time and azimuthal angle compatible with the calo clusters ($|\Delta T| < 50 \text{ ns}$) \rightarrow simpler pattern recognition + higher efficiency

Mu2e Crystals: un-doped Csl

37

UV extended Mu2e SiPMs

- Large area array of 6x6 mm² UV extended SiPMs
- Mixed combination of series and parallel arrangement $\rightarrow 2x3$
- Gain > 10⁶, PDE ~ 25% @ 315 nm, low spread btw cells in the array
- Resilience to neutron flux of up to $1.2 \times 10^{12} \text{ n}_1\text{MeV/cm}^2 \rightarrow \text{Idark increase}$
- Need to cool them down to 0 °C
- MTTF of O(10⁶ hours)
- Pre-production phase underway: 3 producers being selected.

Prototyping and Mockup status

Mu2e Cosmic-Ray Veto

Veto system covers entire DS and half TS

Mu2e Cosmic-Ray Veto

- Will use 4 overlapping layers of scintillator bars
 - Each bar is 5 x 2 x ~450 cm³
 - 2 WLS fibers / bar
 - Read-out both ends of each fiber with SiPM
 - Have achieved $\varepsilon > 99.4\%$ (per layer) in test beam

- Several copious sources of neutrons
 - Production target, stopping target, collimators
- Lots of neutrons and subsequent photons (from n- capture and activation processes)
 - Generate false vetoes in CRV... if rate high enough becomes a source of significant deadtime
 - Cause radiation damage to the read-out electronics (esp. SiPMs)
 - → we are using (we intend to use) HZDR P-ELBE for neutron damage characterization of our SiPMs!
 - → All of this started in the framework of the European Network Muse, now HZDR is member of Mu2e collaboration!!
 - → Radiation damage effort will continue with g-ELBE for dose irradiation and characterization of FEE/Digitizer electronics, SiPMs and Stopping Target Monitor detectors (HPGE)

Mu2e Neutron Shielding

- Have identified a cost effective shielding solution
- Non-trivial optimization required
- Reduces rates of neutrons and photons at CRV to acceptable level

Simulation and comparison between Mars/Geant-4 (and FLUKA?!) is mandatory. Collaboration with HZDR expertise really welcome here

September 2016

Basic reconstruction scheme

Pattern Recognition based on **BABAR Kalman Filter algorithm**

No significant contribution of mis-reconstructed background

Momentum resolution

core σ~120 keV tail σ~180 keV (2.5%)

9/3/2017

Calorimeter Systems of Mu2e

(assuming ~ 10 GHz muon stops, $6x10^{17}$ stopped muons in $6x10^7$ s of beam time)

Category	Source Events				
	μ Decay in Orbit	0.20			
Intrinsic	Radiative μ Capture	<0.01			
	Radiative π Capture	0.02			
	Beam electrons	<0.01			
	μ Decay in Flight	<0.01			
Late Arriving	π Decay in Flight	<0.01			
	Anti-proton induced	0.05			
Miscellaneous	Cosmic Ray induced	0.08			
Total Background 0.36					
Discovery sensitivity accomplished by suppressing backgrounds to < 0.5 event total					

Upper Limit < 6 x 10⁻¹⁷ @ 90% C.L.

Mu2e Project Schedule

Project-X re-imagined to match Budget constraints:

1) PIP-2 plans:

- \rightarrow 1 MW at LNBF at start (2025)
- ightarrow 2 MW at regime at LNBF

\rightarrow x 10 at Mu2e

Projectx-docdb.fnal.gov/cgi-bin/ ShowDocument?docid=1232 CLVF-snowmass \rightarrow Arxiv.1311.5278 Mu2e-2 \rightarrow Arxiv.1307.1168v2.pdf

2) Depending on the beam Structure available:

→ study Z dependence
 if signal is observed
 3) If no signal is observed

Use x 10 events in Mu2e-II

Minor modifications of the detector \rightarrow BR < 6 x 10⁻¹⁸

Figure 3: Target dependence of the $\mu \rightarrow e$ conversion rate in different single-operator dominance models. We plot the conversion rates normalized to the rate in Aluminum (Z = 13) versus the atomic number Z for the four theoretical models described in the text: D (blue), S (red), $V^{(\gamma)}$ (magenta), $V^{(Z)}$ (green). The vertical lines correspond to Z = 13 (Al), Z = 22 (Ti), and Z = 83 (Pb).

Z

9/3/2017

The Mu2e experiment:

- Improves sensitivity by a factor of 10⁴
- Provides discovery capability over wide range of New Physics models
- Is complementary to LHC, heavy-flavor, dark matter, and neutrino experiments
- Is progressing on schedule... will begin commissioning in 2020
- Start discussing about Mu2e-II

Additional Material

Mu2e Conductor R&D

SuperConductor production is well along

- TS and DS conductor done, PS expected end 2016
- Need ~75 km total (incl. spares); about 100% done.

Crystal Choice

	LVSO	BaF ₂	CsI
Radiation Length X _o [cm]	1.14	2.03	1.86
Light Yield [% NaI(Tl)]	75	4/36	3.6
Decay Time[ns]	40	0.9 /650	20
Photosensor	APD	R&D APD	SiPM
Wavelength [nm]	402	220 /300	310

 LYSO CDR Radiation hard, not hygroscopic Excellent LY Tau = 40ns 	Barium Fluoride (BaF ₂) Radiation hard, not hygroscopic very fast (220 nm) scintillating light	 Csl(pure) Not too radiation hard Slightly hygroscopic 20 ns emission time
 Fau = 40hs Emits @ 420 nm, Easy to match to APD. High cost > 40\$/cc 	 Larger slow component at 300 nm. should be suppress for high rate capability Photo-sensor should have extended UV sensitivity and be "solar"-blind Medium cost 10\$/cc 	 Emits @ 320 nm. Comparable LY of fast component of BaF₂. Cheap (6-8 \$/cc)

Straw-hit rates

- From beam flash (0-300 ns): ~1000 kHz/cm²
 Need to survive this, but won't collect data
- Later, near live window (>500 ns)

 Peak ~ 10 kHz/cm² (inner straws)
 Average ~ 3 kHz/cm² (over all straws)

Cosmic Rays are a problem

"fake" CE from CR events

- □ A long MC production used to optimize the CRV geometry by generating the same amount of cosmics that will cross the detector in MU2E running period.
- □ few events evaded the CRV, passing closely enough to the target, were tracked by the tracker and passed all reconstruction tracking criteria. They were all $\mu^- \rightarrow$ rejected due to the combination of Calorimeter and tracking information : timing and E/p

- □ Similar capabilities in physics reach
- □ COMET designed to operate at 56 kW, Mu2e 8 kW
 - \rightarrow COMET will use all JPARC beam
 - \rightarrow Mu2e runs simultaneously with neutrino beam
- □ Final bend after COMET stopping target efficiently transmits conversion e- and provides rate suppression in detector.
- **I** It does not transmit positrons (no $\mu N \rightarrow e^+ N$)
- COMET solenoids ~ 10 m longer than Mu2e
- Higher beam \rightarrow higher cost (solenoid shieldling, neutron shielding)
- Longer solenoids carry "cost" in operation

Phase-1 could be useful if successful to study background rate Phase-2 schedule ... see Kuno's talk , for Mu2e \rightarrow looking for Mu2e-II

Great competition/collaboration \rightarrow ALCAP @ PSI

Q:physics case coupled with the explicit scope of the experiment

What is COMET (E21) at J-PARC

Experimental Goal of COMET

$B(\mu^{-} + Al \to e^{-} + Al) = 2.6 \times 10^{-17}$ $B(\mu^{-} + Al \to e^{-} + Al) < 6 \times 10^{-17} \quad (90\% C.L.)$

- 10¹¹ muon stops/sec for 56 kW proton beam power.
- 2x10⁷ running time (~1 year)
- C-shape muon beam line
- C-shape electron transport followed by electron detection system.
- Stage-1 approved in 2009.

Electron transport with curved solenoid would make momentum and charge selection.

Osaka University

IV	1. DIdlike, A.J. Dulas, D.	Duiling, S.Reckslegel, C.	
ratio	LHT	MSSM (dipole)	MSSM (Higgs)
$\boxed{ \left. \frac{Br(\mu^- \rightarrow e^- e^+ e^-)}{Br(\mu \rightarrow e\gamma)} \right }$	0.021	$\sim 6 \cdot 10^{-3}$	$\sim 6\cdot 10^{-3}$
$\frac{Br(\tau^- \rightarrow e^- e^+ e^-)}{Br(\tau \rightarrow e\gamma)}$	0.040.4	$\sim 1 \cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$
$\frac{Br(\tau^-\!\rightarrow\!\mu^-\mu^+\mu^-)}{Br(\tau\!\rightarrow\!\mu\gamma)}$	0.040.4	$\sim 2\cdot 10^{-3}$	0.060.1
$\frac{Br(\tau^- \rightarrow e^- \mu^+ \mu^-)}{Br(\tau \rightarrow e \gamma)}$	0.04 0.3	$\sim 2 \cdot 10^{-3}$	0.020.04
$\left rac{Br(\tau^- ightarrow \mu^- e^+ e^-)}{Br(\tau ightarrow \mu \gamma)} ight $	0.04 0.3	$\sim 1 \cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$
$\frac{Br(\tau^- \rightarrow e^- e^+ e^-)}{Br(\tau^- \rightarrow e^- \mu^+ \mu^-)}$	0.82.0	~ 5	0.3 0.5
$\frac{Br(\tau^- \rightarrow \mu^- \mu^+ \mu^-)}{Br(\tau^- \rightarrow \mu^- e^+ e^-)}$	0.71.6	~ 0.2	510
$\frac{R(\mu \mathrm{Ti} \rightarrow e \mathrm{Ti})}{Br(\mu \rightarrow e \gamma)}$	$10^{-3}\dots 10^2$	$\sim 5\cdot 10^{-3}$	0.080.15

M Planka A L Ruras P Duling S Packsingal C Taranting

Table 3: Comparison of various ratios of branching ratios in the LHT model (f = 1 TeV)and in the MSSM without [92, 93] and with [96, 97] significant Higgs contributions.

Relative rates are model dependent

Measure ratios to pin-down theory details

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP}\left(B\to X_s\gamma\right)$	*	*	*	***	***	*	?
$A_{7,8}(B\to K^*\mu^+\mu^-)$	*	*	*	***	***	**	?
$A_9(B \rightarrow K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \rightarrow \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \rightarrow e \gamma$	***	***	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

W. Altmannshofer, et al, arXiv:0909.1333 [hep-ph]

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\bigstar \bigstar \bigstar$ signals large effects, $\bigstar \bigstar$ visible but small effects and \bigstar implies that the given model does not predict sizable effects in that observable.

TABLE XII: LFV rates for points **SPS 1a** and **SPS 1b** in the CKM case and in the $U_{e3} = 0$ PMNS case. The processes that are within reach of the future experiments (MEG, SuperKEKB) have been highlighted in boldface. Those within reach of post-LHC era planned/discussed experiments (PRISM/PRIME, Super Flavour factory) highlighted in italics.

SF	SP	S 1a	SPS 1b		SPS 2		SPS 3		Future
Process	CKM	$U_{e3} = 0$	Sensitivity						
$BR(\mu \rightarrow e \gamma)$	$3.2 \cdot 10^{-14}$	$3.8 \cdot 10^{-13}$	$4.0 \cdot 10^{-13}$	$1.2 \cdot 10^{-12}$	$1.3\cdot 10^{-15}$	$8.6 \cdot 10^{-15}$	$1.4 \cdot 10^{-15}$	$1.2 \cdot 10^{-14}$	$O(10^{-14})$
${ m BR}(\mu \to e e e$)	$2.3\cdot 10^{-16}$	$2.7 \cdot 10^{-15}$	$2.9 \cdot 10^{-16}$	$8.6 \cdot 10^{-15}$	$9.4 \cdot 10^{-18}$	$6.2 \cdot 10^{-17}$	$1.0 \cdot 10^{-17}$	$8.9 \cdot 10^{-17}$	$O(10^{-14})$
$CR(\mu \rightarrow e \text{ in Ti})$	$2.0 \cdot 10^{-15}$	$2.4 \cdot 10^{-14}$	$2.6 \cdot 10^{-15}$	$7.6 \cdot 10^{-14}$	$1.0 \cdot 10^{-16}$	$6.7 \cdot 10^{-16}$	$1.0 \cdot 10^{-16}$	$8.4 \cdot 10^{-16}$	$\mathcal{O}(10^{-18})$
$BR(\tau \rightarrow e \gamma)$	$2.3 \cdot 10^{-12}$	$6.0 \cdot 10^{-13}$	$3.5 \cdot 10^{-12}$	$1.7 \cdot 10^{-12}$	$1.4\cdot10^{-13}$	$4.8 \cdot 10^{-15}$	$1.2 \cdot 10^{-13}$	$4.1 \cdot 10^{-14}$	$O(10^{-8})$
$BR(\tau \rightarrow e e e)$	$2.7 \cdot 10^{-14}$	$7.1 \cdot 10^{-15}$	$4.2 \cdot 10^{-14}$	$2.0 \cdot 10^{-14}$	$1.7 \cdot 10^{-15}$	$5.7 \cdot 10^{-17}$	$1.5 \cdot 10^{-15}$	$4.9 \cdot 10^{-16}$	$O(10^{-8})$
$BR(\tau \rightarrow \mu \gamma)$	$5.0 \cdot 10^{-11}$	$1.1 \cdot 10^{-8}$	$7.3 \cdot 10^{-11}$	$1.3 \cdot 10^{-8}$	$2.9\cdot 10^{-12}$	$7.8 \cdot 10^{-10}$	$2.7 \cdot 10^{-12}$	$6.0 \cdot 10^{-10}$	$O(10^{-9})$
${\rm BR}(\tau \to \mu \mu \mu)$	$1.6\cdot 10^{-13}$	$3.4 \cdot 10^{-11}$	$2.2\cdot 10^{-13}$	$3.9\cdot10^{-11}$	$8.9 \cdot 10^{-15}$	$2.4\cdot 10^{-12}$	$8.7\cdot 10^{-15}$	$1.9\cdot 10^{-12}$	$\mathcal{O}(10^{-8})$

- These are SuSy benchmark points for which LHC has discovery sensitivity
- Some of these will be observable by MEG/Belle-2
- All of these will be observable by Mu2e

3-5

M. Kakizaki et al., PLB566 (2003) 210

A few more models...

Prompt Backgrounds

Particles produced by proton pulse which interact almost immediately when they enter the detector: π , neutrons, pbars

- Radiative pion capture, π -+A(N,Z) $\rightarrow \gamma$ +X.
 - γ up to mπ, peak at 110 MeV; γ→ e+e-; if one electron ~ 100 MeV in the target, looks like signal: *limitation in best existing experiment, SINDRUM II?*

energy spectrum of y measured on Mg J.A. Bistirlich, K.M. Crowe et al., Phys Rev C5, 1867 (1972)

also included internal conversion, $\pi^- N \rightarrow e^+ e^- X$

INFN

MEG^{UP} sensitivity

PDF parameters	Present MEG	Upgrade scenario
e ⁺ energy (keV)	306 (core)	130
$e^+ \theta$ (mrad)	9.4	5.3
$e^+ \phi$ (mrad)	8.7	3.7
e ⁺ vertex (mm) Z/Y(core)	2.4/1.2	1.6/0.7
γ energy (%) (w <2 cm)/(w >2 cm)	2.4/1.7	1.1/1.0
γ position (mm) $u/v/w$	5/5/6	2.6/2.2/5
γ-e ⁺ timing (ps)	122	84
Efficiency (%)		
trigger	≈ 99	≈ 99
γ	63	69
e ⁺	40	88
	7 1 0.8 0.6	A

 5.7×10^{-13}

9.4

18

Mu3e at PSI

- Search for $\mu \rightarrow e e e$
 - 10⁻¹⁵ sensitivity in phase IA / IB
 - 10⁻¹⁶ sensitivity in phase II
- Project approved in January 2013
 - Double cone target
 - HV-MAPS ultra thin silicon detectors
 - Scintillating fibers timing counter (from phase IB)

- Mu3e decays test also values of K larger than MEG but with different (reduced) sensitivity al large K with respect to Mu2e
- Phase 1 Mu3e at PSI aims to 10⁻¹⁵ (approved)
- Next phase aims to 10⁻¹⁶
 Schedule is not yet clear

- Contributions from
 - Radiative π Capture
 - $\circ \pi^{-}N_{Z} N_{Z-1}^{*} + \gamma$
 - $\circ\,$ For Al. R π C fraction: 2%
 - $\circ~\mathsf{E}_{_{\!\gamma}} \, \text{extends out to} \, \text{~} \mathsf{m}_{_{\!\pi}}$
 - $\,\circ\,$ Asymmetric γ ––> e⁺e⁻ pair production can yield background electron
 - Beam electrons
 - $\circ~$ Originating from upstream π^{-} and π^{0} decays
 - $_{\odot}\,$ Electrons scatter in stopping target to get into detector acceptance
 - Muon and pion Decay-in-Flight
- Taken together these backgrounds account for ~10% of the total background and scale *linearly* with the number of out-of-time protons

- Thin foils in the debuncher \rightarrow Mu2e production target transport line (fast ٠ feedback)
- Off-axis telescope looking at the production target (slow feedback -• timescale of hours) Spectrometer Magnet

 Bound muon cascades quickly to 1s ground state (emits X-rays) Bohr radius of ground state: $\frac{1}{m} \frac{\hbar^2}{Ze^2}$ $a_0 \sim$ 8 fm 4000 fm 20 fm Ľ e

dominated geometric acceptance

Mu2e Performance

• Robust against increases in rate

D.Glenzinski, Fermilab

Cosmic Ray Veto

• Test beam data to vet design/performance

The STM will measure a variety of well understood gamma ray lines ... under a high-rate brehmstrahlung background

Some CLFV Processes

Process	Current Limit	Next Generation exp
τ → μη	BR < 6.5 E-8	
$\tau ightarrow \mu\gamma$	BR < 6.8 E-8	10 ⁻⁹ - 10 ⁻¹⁰ (Belle II)
$\tau ightarrow \mu \mu \mu$	BR < 3.2 E-8	
$\tau \rightarrow eee$	BR < 3.6 E-8	
$K_L \rightarrow e\mu$	BR < 4.7 E-12	
$K^+ \rightarrow \pi^+ e^- \mu^+$	BR < 1.3 E-11	
$B^0 \rightarrow e\mu$	BR < 7.8 E-8	
B⁺ → K⁺eµ	BR < 9.1 E-8	
$\mu^+ \rightarrow e^+ \gamma$	BR < 4.2 E-13	10 ⁻¹⁴ (MEG)
$\mu^+ \rightarrow e^+e^+e^-$	BR < 1.0 E-12	10 ⁻¹⁶ (PSI)
$\mu N \rightarrow eN$	R _{μe} < 7.0 E-13	10 ⁻¹⁷ (Mu2e, COMET)

Most promising CLFV measurements use μ