

Test Beam of the calibration system for the Muon g-2 experiment performed with 500 MeV e^- beam at the Beam Test Facility in Frascati

Anna Driutti INFN & University of Udine

Outline

2 TEST BEAM: PURPOSE, FACILITY & ELECTRON BEAM

SEXPERIMENTAL SETUP

- Laser system: light distribution chain & monitors
- Acquisition system

RESULTS

- Calibrations
- Stability
- Temperature-dependence

Laser-based calibration system for the muon g-2 experiment

• Objectives:

- calibration of the detection time;
- equalization of the crystal response and light intensity;
- calibration of the positron energy measurements;
- Key elements:

A. Driutti (INFN & U. Udine)

102° Congresso SIF - Padova, 26 -30 September 2016

The Test Beam

Purpose:

- test the complete calibration system chain;
- calibrate the equivalent luminous energy of the laser.

Beam Test Facility (BTF) @ Laboratori Nazionali Frascati (LNF)

- BTF is part of the DA Φ NE accelerator complex
- 100 m² instrumented experimental hall

The Electron Beam

- highly collimated;
- 450 MeV ±1% monoenergetic;
- 10 ns spill @ 50 Hz repetition rate;

- average of 1-3 electrons per pulse;
- 250 µm of transverse dimension.

Experimental Setup: Laser Distribution System

Experimental Setup: Monitoring system and Calorimeter

Monitoring System:

- two Source Monitor designs:
 - 1. Linear SM: engineered diffuser + reflective mixing chamber
 - 2. Sphere SM: integrating sphere
- Local Monitor: two Photonics PMTs;
- custom PIN frontend electronics;

Calorimeter:

- final detector's subset of 5 elements;
- element = $2.5 \times 2.5 \times 14 \text{ cm}^3 \text{ PbF}_2$ crystal + 16 ch. Hamamatsu SiPM;
- 4 mock Plexiglass crystals.

Experimental Setup: Acquisition System

DAQ included:

- two CAEN digitizer (5742, 5 GS/s);
- 3 triggers (beam, laser, Am) using NIM electronics;
- ambient and SiPMs temperatures.

A. Driutti (INFN & U. Udine)

102° Congresso SIF - Padova, 26 -30 September 2016

Experimental Setup: Typical Events

Laser Events

Beam Events

Results: Calibration trough photostatistics

- Using laser data with different intensities obtained with filter wheel;
- measure laser-pulse area mean (μ_L) & variance (σ_L^2):

$$\mu_{L} = kn_{p.e.} \qquad \sigma_{L}^{2} = \underbrace{\sigma_{noise}^{2}}_{\text{electronic noise}} + \underbrace{(k\sqrt{n_{p.e.}})^{2}}_{\text{Possion statistic}} + \underbrace{\alpha(kn_{p.e.})^{2}}_{\text{intrinsic fluctuations}} = \sigma_{noise}^{2} + k\mu_{L} + \beta\mu_{L}^{2}$$

- from fit identify *k* as *p*1 the pulse area/p.e.
- measured 600-800 p.e. depending on SiPM, bias voltage and temperature.

Results: Equivalent light Calibration

Photoelectron yield from beam:

 $(\mu_{1e}/k)/450\,{
m MeV} = 0.9\,{
m p.e.}/{
m MeV}$

- μ_{1e} single electron peak mean from fit.
- *k* from photoelectron calibration;
- 450 MeV *e*-beam energy;

Laser Equivalent Energy:

- μ_L mean laser-pulse area on SiPMs (filter 100% trasm.)
- $\mu_L/\mu_{1e} \sim 1.8 \Rightarrow$ Laser Equivalent Energy @ TB ~ 800 MeV

Scale to experiment:

• light power before calorimeter:

11.2 pJ measured @ TB vs141 pJ expected @ experiment

• Equivalent Maximum Energy: $800 \text{ MeV}/11.2 \text{ pJ} \cdot 141 \text{ pJ} = 10 \text{ GeV}$

Results: Stability monitoring and corrections

Results: Stability monitoring and corrections

Monitors data = PiDs Sum · LM (2nd pulse / 1st pulse)

A. Driutti (INFN & U. Udine)

Results: Temperature-dependence of PiDs response

- measured after TB with a temperature controlled chamber:
 - PiD1 inside the chamber
 - PiD2 outside the chamber (reference diode)
- PiDs coupled with their frontend electronics

Conclusions & Acknowledgements

• **Successful** test of the laser-based calibration system for the *g*-2 experiment:

- tested all the key elements of the system;
- measured electron-energy equivalent of the laser intensity up to 10 GeV;
- guaranteed light stability at sub-per-mill level (thanks to corrections with Monitors data);
- A **paper** is ready to be submitted on Nuclear Instruments and Methods in Physics Research Sec. A (**NIM**) journal:

Electron beam test of key elements of the laser-based calibration system for the muon g-2 experiment

A. Anastas^{a,e,e,e}, A. Basti^m, F. Bedeschi^m, M. Bartolini^m, G. Cantatore^{4,g}, D. Cauz^{d,i}, G. Corradi^a, S. Dabagov^{a,e}, G. Di Sciascio^f, R. Di Stefanol^{ie}, A. Driuttiⁱ, O. Escalante^h, C. Ferrari^{n,b}, A.T. Fienbergⁱ, A. Fioretti^{a,b}, C. Gabbanin^{in,b}, A. Giotosa^{a,b}, D. Hampaⁱ, D.W. Hertzogⁱ, M. Iacovac^{ie,h}, M. Karuza^{d,k}, J. Kaspat¹, A. Liedl^a, A. Lusian^{im,n}, F. Marignetti^{b,e}, S. Mastroiann^{i^e}, D. Moricciani^f, G. Pauletta^{d,j}, G.M. Piacentino^{a,p}, N. Raha^f, E. Rossi^a, L. Santiⁱ, G. Venanzoni^a

Acknowledgements: thanks to BTF staff for support

Conclusions & Acknowledgements

• **Successful** test of the laser-based calibration system for the *g*-2 experiment:

- tested all the key elements of the system;
- measured electron-energy equivalent of the laser intensity up to 10 GeV;
- guaranteed light stability at sub-per-mill level (thanks to corrections with Monitors data);
- A **paper** is ready to be submitted on Nuclear Instruments and Methods in Physics Research Sec. A (**NIM**) journal:

Electron beam test of key elements of the laser-based calibration system for the muon g-2 experiment

A. Anastasi^{a,c,*}, A. Basti^m, F. Bedeschi^m, M. Bartolini^m, G. Cantatore^{d.g}, D. Cauz^{d.i}, G. Corradi^a, S. Dabagov^{a,q},
 G. Di Sciascio^f, R. Di Stefano^{j.e}, A. Driuttiⁱ, O. Escalante^b, C. Ferrari^{a,b}, A.T. Fienberg^l, A. Fioretti^{a,b},
 C. Gabbanini^{a,b}, A. Gioiosa^{o,p}, D. Hampai^a, D.W. Hertzog^l, M. Iacovaci^{c.h}, M. Karuza^{d.k}, J. Kaspar^l, A. Liedl^a,
 A. Lusiani^{m,n}, F. Marignetti^b, S. Mastroianni^e, D. Moricciani^f, G. Pauletta^{d.i}, G.M. Piacentino^{o,p}, N. Raha^f,
 E. Rossi^a, L. Santi^d, G. Venanzoni^a

Acknowledgements: thanks to BTF staff for support

A. Driutti (INFN & U. Udine)