

Il sistema di calibrazione laser dell'esperimento g-2 al Fermilab

Eleonora Rossi

Società Italiana di Fisica 102° Congresso Nazionale Padova, 26-30 settembre 2016

- Obiettivo dell'esperimento g-2 al Fermilab
- Procedura sperimentale
- Il sistema di calibrazione laser

La precedente misura dell'anomalia magnetica a_{μ} , effettuata dall'esperimento E821 a Brookhaven nel 2001, ha mostrato una discrepanza con la previsione teorica del Modello Standard. Combinando l'errore statistico e quello sistematico si ottiene un errore totale sperimentale di 0.54 ppm.

L'obiettivo del nuovo esperimento g-2 consiste nel migliorare la precisione della misura su a_{μ} di un fattore 4, riducendo l'errore a 0.14 ppm, valore paragonabile all'errore di 0.4 ppm associato alla piu' accurata predizione del Modello Standard.

2×10^{11} a Raysed due ras spectromentale

Incertezze sistematiche

	E821	E989 Improvement Plans	Goal
	[ppb]		[ppb]
Cain changes	120	Better laser calibration	and the second
		low-energy threshold	20
Pileup	80	Low-energy samples recorded	
		calorimeter segmentation	40
Lost muons	90	Better collimation in ring	20
CBO	70	Higher n value (frequency)	
		Better match of beamline to ring	< 30
E and pitch	50	Improved tracker	
		Precise storage ring simulations	30
Total	180	Quadrature sum	70
Istituto Nazionale Gi Fisica Nucleare Eleonora Ross			

La violazione della parita' nel decadimento del muone unita all'effetto del boost di Lorentz fa si' che, sopra una certa soglia sull'energia nel sistema del laboratorio che corrisponde alla selezione di un range di angoli nel sistema di riferimento del muone, la direzione dei positroni decaduti tenda a seguire la direzione dello spin del muone.

Il numero di particelle rivelate oltre questa soglia in funzione del tempo decresce esponenzialmente ma oscilla con frequenza ω_a .

In assenza di qualsiasi rumore di fondo dovuto a strumenti, lo spettro del

decadimento della popolazione di muoni è descritto dalla seguente forma funzionale:

La violazione della parita' nel decadimento del muone unita all'effetto del boost di Lorentz fa si' che, sopra una certa soglia sull'energia nel sistema del laboratorio che corrisponde alla selezione di un range di angoli nel sistema di riferimento del muone, la direzione dei positroni decaduti tenda a seguire la direzione dello spin del muone.

Lo spettro temporale fa vedere la vita media del muone modulata dalla frequenza di precessione dello spin.

SIF-102° Congresso Nazionale - Padova

Eleonora Rossi

SIF-102° Congresso Nazionale - Padova

Eleonora Rossi

SIF-102° Congresso Nazionale - Padova

Eleonora Rossi

Per poter verificare la totale stabilita' in guadagno del sistema, G, verra' impiegato un sistema di calibrazione laser che ha come obiettivo quello di monitorare le fluttuazioni di guadagno dei fotorivelatori del calorimetro, per tenere le incertezze sistematiche dovute al guadagno a circa 0.02 ppm. La soluzione proposta sta nel mandare un **impulso di riferimento**, leggerlo con il rivelatore e vedere come questo risponde; la difficolta' sta nel farlo a questa

precisione.

Necessita' di controllare le fluttuazioni:

a breve termine, ovvero nell'arco di 700 µs (tempo di un fill), che dipendono dal fascio (rate di muoni, positroni che possono causare sovra/sotto tensione;

• a lungo termine, ovvero nell'arco di ore, che dipendono da condizioni esterne

 $\frac{\delta G}{G} < 0.1\%$

(temperatura, drift giorno/notte,...).

$$\frac{\delta G}{G} < 1\%$$

La lunghezza d'onda della luce impulsata deve trovarsi all'interno del range di accettanza del rivelatore determinato dalla convoluzione della densita' spettrale della luce Cherenkov emessa dagli elettroni nel cristallo con la curva di trasmissione del cristallo e con il valore dell'efficienza quantica (Q.E.) del rivelatore il cui picco si ha, per i SiPM, intorno ai 420 nm.

$$\lambda$$
 = 405 nm

La frequenza di ripetizione dell'impulso deve essere dell'ordine della decina di kHz; miglior compromesso fra la necessita' di avere una buona statistica, la necessita' di evitare gli effetti di saturazione del sistema di acquisizione e di sovrapposizione dei segnali positrone-laser.

L'energia luminosa degli impulsi di calibrazione deve essere della stessa intensita' dell'energia depositata dagli elettroni nel cristallo, circa 1-2 GeV; questo corrisponde ad un energia per impulso su ogni cristallo in ciascuna stazione di circa 0.01 pJ.

$$E_{pulse}^{crystal} = N_{\gamma} \times E_{\gamma} = N_{\gamma} \times h \frac{c}{\lambda} = 2 \cdot 10^{4} \times 6.6 \cdot 10^{-34} [J \cdot s] \times \frac{3 \cdot 10^{8} [m \cdot s^{-1}]}{400 \cdot 10^{-9} [m]} = 0.01 \, pJ$$

$$E_{pulse}^{TOT} = \frac{24 \times 54 \times E_{pulse}^{crystal}}{T} = \frac{24 \times 54 \times 0.01 pJ}{T} = \frac{13 pJ}{T} \qquad \text{Fattore di trasmissione che include tutte le perdite lungo il cammino ottico}$$

La sorgente di luce e tutta la sua elettronica di controllo devono essere poste all'esterno dell'anello, per evitare possibili perturbazioni elettromagnetiche del campo locale indotte dai flussi di corrente utilizzati per eccitare il laser. E' necessario includere nel design della geometria punti di distribuzione primari e secondari.

Le fibre di silice (20 dB/km di attenuazione a 400 nm) sono la migliore soluzione per lunghi percorsi di distribuzione ed in termini di resistenza contro la solarizzazione o altri effetti di invecchiamento, dovuti agli alti valori di intensita' di luce trasportata. Per i bundle di fibre piu' corti, dove l'intensita' di luce e' ridotta di almeno un ordine di grandezza, possono essere prese in considerazione fibre di PMMA (200 db/km di attenuazione a 400 nm).

SIF-102° Congresso Nazionale - Padova

INFN

SIF-102° Congresso Nazionale - Padova

N Eleonora Rossi

INFN

SIF-102° Congresso Nazionale - Padova

N Eleonora Rossi

INFN

Source Monitor

Posto nei pressi della sorgente laser, misura il valore assoluto della luce laser inviata al sistema di distribuzione. Per ottimizzare la stabilita' vengono usati i seguenti espedienti:

- vengono impiegati 2 PIN Diode per ogni Source Monitor, molto piu' stabili dei SiPM alle variazione del bias e della temperatura;
- viene usato un sistema ridondante, con 3 fotorivelatori per ogni monitor (2 PIN+1 PMT);
- viene incorporata una sorgente radioattiva per la calibrazione assoluta (sorgente di Americio 241).

II PMT vede allo stesso tempo:

- * gli impulsi laser trasmessi dalla sfera al fotocatodo attraverso delle fibre;
- Impulsi emessi da una sorgente di Americio 241: questo segnale ha la funzione di riferimento assoluto e puo' essere usato per correggere possibili instabilita' nel guadagno del PMT. Dal momento che il PMT ed il PIN Diode vedono lo stesso segnale laser, questa serve anche a controllare la stabilita' dei PIN Diode in un intervallo di tempo sufficiente ad accumulare la statistica richiesta.

15

Source Monitor

Local Monitor

Il Source Monitor fornisce il segnale di riferimento al Local Monitor attraverso delle fibre ottiche. La funzione del LM e' quella di monitorare e correggere le instabilita' introdotte dalla catena di distribuzione della luce. E' un sistema ridondante composto da due PMT. Ogni PMT riceve due segnali attraverso due fibre: la prima fibra arriva dal Source Monitor e fornisce il segnale di riferimento della sorgente mentre la seconda fibra arriva direttamente dal bundle che porta la luce ai cristalli del calorimetro.

I due impulsi sono ben separati temporalmente da circa 250 ns, intervallo temporale sufficiente a risolvere due impulsi di luce. Il vantaggio di questo setup sta nel fatto che il guadagno dei PMT puo' considerarsi costante durante questa scala temporale e due impulsi possono essere direttamente paragonati: il rapporto del secondo impulso sul primo e' una misura diretta della stabilita' della catena di distribuzione. Una calibrazione assoluta puo' essere fornita riferendo questi segnali al Source Monitor di ciascuna sorgente laser.

Local Monitor

Example of Local Monitor signals

SIF-102° Congresso Nazionale - Padova

INFN

N Istituto Nazionale Eleonora Rossi

Conclusioni

- I'obiettivo del nuovo esperimento g-2 al Fermilab e' ambizioso ma puo' essere raggiunto grazie all'ottimizzazione dei rivelatori e del sistema di calibrazione;
- Il sistema di calibrazione e' in grado di monitorare e correggere variazioni dell'intensita' del laser fino allo 0.01%. Variazioni nella catena di distribuzione possono essere corrette allo stesso livello su una scala temporale piu' lunga: i fattori di correzione da applicare durante l'analisi si ottengono dai segnali del Local Monitor;
- simulazioni sulle fluttuazioni del guadagno sono in atto;
- l'installazione del sistema al Fermilab e' gia' cominciata.

