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Presentation outline

• Why Mu2e
• Experimental technique
• Accelerator complex
• Detectors  layout
• Status of Mu2e
• Conclusions
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What is  Mu2e
– Mu2e is a highly sensitive search for Charged-Lepton Flavor Violation 

(CLFV)
– Will search neutrinoless conversion  

of a muon into an electron in the 
Coulomb field of a nucleus

– Will use current Fermilab accelerator complex to reach a single event 
sensitivity of 2.4 x10-17sensitivity 104 better than current world’s best 

– Will have discovery sensitivity over broad swath of New Physics 
parameter space

– Mu2e will detect and count the electrons coming from the conversion
decay of a muon with respect to standard muon capture
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• Muon-to-electron conversion is similar but complementary to other CLFV 
processes as μà eγ and μà 3e. 

• The Mu2e experiment searches for muon-to-electron conversion in the 
coulomb field of a nucleus:  μ- Al→ e-Al

• CLFV processes are strongly suppressed in the Standard Model

• it is not forbidden  due to neutrino oscillations 

• In practice  BR(μ → eγ )  ~ Dmn
2 / Mw

2 < 10-54

thus  not observable

§ New Physics could enhance CLFV rates to observable values
§ A detected signal from Mu2e would be clear evidence of physics beyond 

the SM, NP, Susy, Compositeness, Leptoquark, Heavy neutrinos, Second 
Higgs Doublet, Heavy Z’
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µ->e is a signature  of NP models
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Mu2e Sensitivty
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Mu2e operating principle
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• Generate a intense beam  (1010/s) of low  momentum (pT<100 MeV/c)  
negative µ’s

• Stop the muons in a target
– Mu2e plans to use Aluminum
– Sensitivity goal requires ~1018

stopped muons
– 1020 protons on target 

(2 year run – 2x107 s)

• The stopped muons are trapped in orbit 1S around the nucleus
– In  aluminum: tµ

Al = 864 ns
– Large tµ

N important for discriminating background

• Look for events consistent with µNàeN

number	of	grains	of	sand	on	earth’s	beaches



Mu2e Signal
µ-’s captured in the Al target fall to a 1S  bound state giving origin to:

• muon decays in orbit (DIO): (40%)
• Muon capture: the wave function of muons and nuclei overlap, the 

nucleus can trap the muon:                                                     (61%)
generating a flux of p,n and g

• Neutrinoless muon to electron conversion

• Results in a monoenergetic electron of  104.97 MeV
•

– Mµ muon mass, 105.66 MeV/c2

– Bµ binding energy of a muon in  the 1S orbit of Al, 
0.48 MeV

– Cµ nuclear recoil of Al, 0.21 MeV
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µ− + Al→e− ν e ν µ + Al
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ECE = mµc
2 − Bµ (Z =13) −Cµ (A = 27)
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Mu2e processes 
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Nuclear Capture ~ 61%

Decay In Orbit (DIO) ~ 39%

Dominant Background 
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Backgrounds to deal with
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• Muon decay in orbit (DIO) 

• muon capture      

• Pions from the muon beam can undergo 
radiative   capture (RPC) 

g  up to mp , peak at 110 KeV. One electron can mimic signal 

• Pions/muons decay in flight   

• Antiprotons  produce pions when they annihilate in the target: are       
negative and they can be slow

• Electrons from beam

• Cosmic rays
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PROMPT vs Late arriving
Prompt background like radiative
pion capture decreases rapidly
(~1011 reduction after 700 ns)



Pulsed beam structure
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q Use the fact that muonic atomic lifetime >> prompt background
Need a pulsed beam to wait for prompt background to reach acceptable levels
à Fermilab accelerator complex provides ideal pulse  spacing

q OUT of time protons are also a problem->prompt bkg arriving late
To keep associated background low we need proton extinction 
(Np out of bunch)/(Np in bunch)<10-10

Proton bunch hits
production  target

Muons arrive at 
Stopping target

Muon lifetime in 1S Al orbital ~864 ns

Captured muon decays
reach the detectors

p+



µ

Muon from decay in orbit: DIO

e

Ø Electrons from decay of bound muons (DIO) 
Ø If the neutrinos are at rest the e- can have exactly the                

conversion energy ECE=104.97 MeV
Ø Recoil tail extends to conversion energy, with a rapidly falling spectrum  

near the endpoint
Ø Drives resolution requirements

1[ ( , )] ( , )S
bound eA N Z A N Z e µµ n n- -+ ® + + +

Ø The most sneaky source of background comes from Stopped Muons
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Accelerator Scheme & Proton extinction
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• Booster: 21 batches of 4×1012

protons every 1/15th second

• Booster “batch” is injected into the 
Recycler ring and re-bunched into 4 
bunches

• These are extracted one at a time to 
the Delivery ring

• As a bunch circulates, protons are  
extracted to produce the desired 
beam structure à pulses of ~3x107

protons each, separated by 1.7 µs

Accelerator	models	take	into	account	collective	effects
show	that	this	combination	gets		~	10-12

Proton	Extinction

g-2



• Mu2e Solenoid System
– Superconducting

• Requires a cryogenic system
– Inner bore evacuated to 10-4 Torr to limit background due to 

interactions of the charged particles with air

The Mu2e beamline
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• Production Solenoid
– Pulsed proton beam coming from 

Debuncher
hit the target
• 8 GeV protons
• every 1695 ns / 200 ns width

– Production target
• tungsten rod, 16 cm long with a 3 mm radius
• produces pions that then decay to muons

– Solenoid
• a graded magnetic field between  4.6 T (at end) 

and 2.5 T (towards the transport solenoid) traps the 
charged particles and accelerates  them toward the 
transport solenoid 

The Mu2e beamline

• Transport Solenoid
– Graded magnetic from 2.5 T (at the 

production solenoid entrance) to 2.0 T 
(at the detector solenoid entrance) 
• Allows muons to travel on a 

helical path from the production 
solenoid to the detector solenoid

– S-shaped to remove the detector 
solenoid out of the line of sight from 
the production solenoid
• No neutral particles produced in 

the production solenoid  enter 
the detector solenoid, photons, 
neutrons
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Pulsed	beam	of	incident	protons

off-center central TS collimator and
90° bends passes low momentum
negative muons and suppresses
positive particle and high momentum
negative particles. µ+

µ-



The Mu2e Beamline
• The Detector Solenoid houses the Al target 
and the two main detectors: the tracker and
the calorimeter

– 17 Aluminum disks, 0.2 mm thick, 
radius between 83 mm (upstream)
and 63 mm (downstream)

– Surrounded by graded magnetic field from 2.0 T (upstream) to 1.0 T 
(downstream)

– Conversion electrons will travel on a helical path 
toward the tracker and then hit the calorimeter

– Electrons produced  in the opposite direction 
from the tracker experience 
an increased magnetic field 
which reflects them back 
toward the tracker

Negative muons
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The Mu2e Tracker
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straw• The Tracker will employ low mass straw drift tubes  with 
tubes   transverse to secondary beam

• 15 mm thick straw walls, dual-ended readout (ADC-TDC) 
length 430 – 1120 mm.

• It must operate in vacuum
• Self-supporting “panel” consists of 100 straws
• 6 panels assembled to make a “plane”
• 2 planes assembled to make a “station” -> 

18 stations
• Rotation of panels and planes improves stereo

information
• >20k straws total

• 5 mm diameter straw
• Spiral wound
•Walls: 12 mm Mylar + 3 mm 
epoxy   + 200 Å Au + 500 Å Al
• 25 µm Au-plated W sense wire
• 33 – 117 cm in length
• 80/20 Ar/CO2 with HV < 1500 V

3.2	m



The Mu2e Tracker

• Inner 38 cm is purposefully un-instrumented
– Blind to beam flash
– Blind to >99% of DIO spectrum
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Escape
thru	center
of	Tracker

Fully
fiducial



First Prototype Panel
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Fermilab,	March	2015

• Starting pre-production prototype now



Mu2e Spectrometer Performance

• Performance well within physics requirements
115 keV/c momentum resolution
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core	width	=	115	keV/c
high	tail	slope	=	179	keV/c
high	tail	fraction	=	2.9%
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The calorimeter has to:

§ Provide high e- reconstruction efficiency for μ rejection of 200
§ Provide cluster-based additional seeding for track finding
§ Provide online software trigger capability 
§ Stand the radiation environment of Mu2e
§ Operate for 1 year w.o. interruption in DS  w/o reducing performance

the calorimeter needs to fulfill  the following 

à Provide energy resolution σE/E of O(6 %) 
à Provide timing resolution σ(t) < 200 ps
à Provide position resolution < 1 cm
à Provide almost full acceptance for CE signal  @ 100 MeV 
à Redundancy in FEE and photo-sensors 

A crystal based disk calorimeter

The Mu2e calorimeter 

23F.	Happacher		



High granularity crystal based calorimeter with:

q 2 Disks (Annuli) geometry to optimize acceptance
for spiraling electrons

q Crystals with high Light Yield for timing/energy 
resolution à LY(photosensors) > 60 pe/MeV 

q 2 photo-sensors/preamps/crystal for redundancy 
and reduce MTTF requirement à now set to 1 million hours/SIPM

q Fast signal for Pileup and Timing resolution à τ of emission < 40 ns + Fast 
preamps

q Fast WFD to disentangle signals in pileup
q Crystal dimension optimized to stay inside DS envelope

à reduce number of  photo-sensor, FEE, WFD (cost  and bandwidth)
while keeping  pileup under control and position resolution < 1 cm.

q Crystals and sensors should work in 1 T B-field and in vacuum of 10-4 Torr and:
à Crystals survive a dose of 100 krad and a neutron fluency of  1012 n/cm2

à Photo-sensors survive 20 krad and a neutron fluency of 3×1011 n_1MeV/cm2

The Mu2e Calorimeter 
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The Calorimeter consists of two disks containing 674 
34x34x200 mm3 pure CsI crystals each

à Rinner = 374 mm, Router=660 mm, depth = 10 X0 (200 mm)

à Disks separated by 75 cm, half helix length

à Each crystal is readout by two large area UV extended 
SIPM’s (14x20 mm2) maximizing light collection. 
PDE=30% @ CsI emission peak =315 nm.  GAIN ~106

à TYVEK wrapping

à Analog FEE is onboard to the SiPM (signal amplification 
and shaping) and digital electronics  located in 
electronics crates (200 MhZ sampling)

à Cooling system – SiPM cooling, Electronic dissipation

à Radioactive source and laser system provide absolute 
calibration and monitoring capability

The Mu2e Calorimeter 
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The  Calorimeter engineering
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Mu2e Pattern Recognition

• A signal electron, together with all the other 
interactions occurring simultaneously, integrated over 
500-1695 ns window
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Straw	Tracker Crystal	CalorimeterStopping	Target



Mu2e Pattern Recognition
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(particles with hits within +/-50 ns of signal electron tmean)

signal	e-
DIO	e-

knock-out	protons

q Search for tracking hits with time and 
azimuthal angle compatible with the 
calorimeter clusters ( |ΔT| < 50 ns ) à
simplification of pattern recognition

q Add search of an Helix passing 
through cluster and selected hits +     
use calorimeter time to calculate 
tracking Hit drift times

q Reduce the wrong drift sign 
assignments i.e. smaller positive 
momentum tail 



Cosmic µ rejection
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• 105 MeV/c e- are ultra-relativistic, while 105 MeV/c µ have β ~ 0.7 
and a kinetic energy of ~ 40 MeV;

• Likelihood rejection combines 𝚫t = ttrack - tcluster and E/p:
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CsI+MPPC tests
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Mu2e

Experimental Set Up used @ BTF

27 July 2015I. Sarra @ Calorimeter Technical Review  

#  One scintillator with double PMT 
readout to collect cosmic rays

#  1 green laser +  sphere + 9 quartz 
fibers to monitor the MPPC stability 
(0.2 Hz trigger)

#  Beam triggered formed by the 
coincidence between two plastic 
finger scintillators (10x10x50 mm3 ) 
readout with fast PMTs close to the  
calor surface.

#  Prototype installed over a remote 
controlled moveable table in front 
of the beam to scan the matrix for 
center adjustment.

#  A rotating table used to get
      different impact angles.

&  Detailed Geant-4 simulation done with all the construction 
features of the matrix: dimension, positioning of the fingers, 
photo-sensors (p.e./MeV, noise), 100 μm Tyvek wrapping,

&   Optical Photon Transportation not simulated.
&  LRU small enough to be negligible!!
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Mu2e

Matrix assembly: components

27 July 2015I. Sarra @ Calorimeter Technical Review  

100 μm Tyvek
reflective wrapping 

MPPC lodgments created by 
means of PVC 3D print 

 

Electronics FEE: analog adder 
of the 16 anodes/MPPC 
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§ @100 MeV: Good energy ( 6-7%) and timing ( 110 ps) resolution
§ Leakage dominated    

• A small crystal prototype has been  
built and tested in Frascati in April 
2015 

• 3x3 matrix of  3x3x20 cm3 un-doped 
CsI crystal coupled with UV-extended 
MPPC.

• Test with e- between 80 and 120 MeV



The Cosmic ray Veto
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PS

TS

Without	the	veto	system,	~1	cosmic-ray
induced	background	event	per	day

Veto system covers entire DS and half TS

Cosmic µ can generate background
events via decay, scattering, or 
material interactions



Mu2e Cosmic-Ray Veto

• Will use 4 overlapping layers of scintillator
– Each bar is 5 x 2 x ~450 cm3

– 2 WLS fibers / bar
– Read-out both ends of each fiber with SiPM
– Have achieved e > 99.4% (per layer) in test beam
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Normalization, 𝑅 = $ %&'→)&'
$*+,-./0 %&'
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Production target Stopping
target 

Sweeper 
magnet

collimator Germanium detector

Design of Stopping Target monitor
• High purity Germanium (HPGe) detector

• Determines the muon capture rate on 
Al to about 10% level

• Measures X and g rays from Muonic Al
347 keV 2p-1s X-ray (80% of µ stops)
844 keV g-ray (4%)
1809 keV eV g-ray (30%)

• Downstream to the Detector Solenoid
• Line-of-sight view of Muon Stopping

Target
• Sweeper magnet

• Reduces charged bkg
• Reduces radiation damage



Apr	18,	2015:	Mu2e	groundbreaking
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Mu2e	Detector	Hall

Construction	well	along
• Expect	to	warm	it	up	

sometime	in	the	fall	of	
2016
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Graphic	of	proposed	Mu2e	Detector	Hall
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Mu2e	Schedule

FY14																	FY15																	FY16																	FY17																	FY18																FY19																FY20 FY21

CD-1 CD-3a CD-2/3b

Superconductor	
R&D

Solenoid	Infrastructure
Solenoid	
Installation	&	
Commissioning

Solenoid	Design

Accelerator	and	Beamline	

Detector	Construction

Detector	Hall	
Design

Site	
Work

Detector
OperationsCosmic	Tests

CD-3c

Detector	Hall	
Construction

Beam	line
Commissioning

Fabricate	and		QA	Superconductor

Solenoid	Fabrication	and	QA

Produced:	February	2015

FY14																	FY15																	FY16																	FY17																	FY18																FY19																FY20 FY21



Summary
The Mu2e experiment:

• Improves sensitivity by a factor of 104

• Provides discovery capability over a wide range of New 
Physics models

• is complementary to LHC, heavy-flavor, and neutrino 
experiments

• Mu2e  has completed the CD-2 and CD-3 

à civil  construction ongoing
à Detector construction period 2017-2018 followed by 

installation in 2019
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