

Characterization of crystal and SiPM of the Mu2e electromagnetic calorimeter

102° Congresso SIF Eleonora Diociaiuti Roma Tre & LNF

\$Fermilab

Outline

The Mu2e experiment: the goal

- Detect the CLFV conversion process $\mu^+(A,Z) \rightarrow e^+(A,Z)$ in the field of a nucleus
- Negligible in the SM (BR=10⁻⁵² assuming neutrino oscillations)
- Observation of CLFV single is a clear evidence of New Physics

MU2E

Design sensitivity for a 3 years run: • 2.5x10⁻¹⁷ Single Event Sensitivity • <6x10⁻¹⁷ BR limit at 90% CL

$$R_{\mu e} = \frac{\Gamma(\mu^- + N(A, Z)) \to e^- + N(A, Z)}{\Gamma(\mu^- + N(A, Z) \to \text{ all muon capture})} \le 6 \times 10^{-17} \text{ (@90\%CL)}$$

Muons are captured in a Al stopping target and fall to a 1S ground state:

- Muon decay in orbit (DIO) $\mu^- + Al \rightarrow e^- \overline{\nu}_e \nu_\mu + Al$ (40%)
- Muon capture $\mu^- + Al \rightarrow \nu_\mu + Mg~$ (60%)
- Neutrinoless muon to electron conversion $\mu^- + Al \rightarrow e^- + Al$

Initial state: muonic atom Final state:

- Single mono-energetic electron
- Recoiling intact nucleus

 $E_e = m_\mu c^2 - B_\mu(Z) - C(A) \approx 104.96 \ MeV$

0.035

0.025

0.015

0.005

N dE (MoV

E (MeV)

Experimental set up

Production Solenoid (PS):

- 8 GeV proton beam strikes target, producing almost pions.
- Graded magnetic field contains backwards pions/muons and reflects slow forward pions/muons

Transport Solenoid (TS):

- S-shaped
- Selects low momentum, negative muons
- Antiproton absorber in the mid-section

Detector Solenoid (DS):

- · Capture muons on Al target,
- Measure momentum in tracker and energy/time in calorimeter
- Cosmic Ray Veto detector surrounds the solenoid to make CR contribution negligible

NFN

EM Calorimeter Design

- Energy resolution ~ 5% (5 MeV at 100 MeV)
- Time resolution better than ~0.5 ns
- Position resolution $\sigma_{r,z} \sim 1 \text{ cm}$

MU2

- Provide PID information to be combined with other from tracker in order to distinguish electrons from muons
- Provide a trigger to identify events with significant energy deposit
- Operate in a high-rate environment, with radiation exposure up to ~15 Krad/year and in a neutron flux equivalent to 10¹¹MeV/cm²
- Temperature and gain stability
- Operate in 1T magnetic field

ach calorimeter dis	k consists	of 674 CsI 34x34x200 mm ³ crystals
CsI Crystal		 Adequate radiation
Radiation length X₀[cm]	1.86	 Adequate radiation hardness Slightly hygroscopic 30 ns emission time, small slow component Emit at 315 nm
Light Yield [% Nal(Tl)]	3.6	
Decay Time[ns]	30	
Wavelength [nm]	315	

Each crystal read out by a 2x3 array of individual 6x6 mm² SiPM

Specification from Hamamatsu Mppc			
Pixel pitch [µm]	50		
Effective photosensitive area [mm]	6.0x6.0		
number of pixels	14400		
Window material	Silicon resin		
Gain (at 25)	1.7 x 10 ⁶		

• High quantum efficiency at 315 nm(~25%)

- Large active area to maximise the number of collected photoelectrons
- High gain, fast signal and low noise
- Work in vacuum at 10⁻⁴ Torr

Crystal characterization:light output

New measurements of light emission of CsI have been performed in order to verify that crystals from different vendors could meet the Mu2e requirements:

• LY>100 p.e./MeV

Mu2e

- LRU<5%
- Energy resolution< 20%

Setup:

• ²²Na source

Entries

- crystal wrapped with 150 µm thick Tyvek
- 2"UV-extended PMT
- Measurement repeated at 8 points along the crystal

E. Diociaiuti | Characterization of crystals and SiPM of the Mu2e electromagnetic calorimeter

Radiation induced noise

- Thermal neutrons from HOTNES facility (ENEA Frascati) with an Am B source(flux 700 n cm⁻² s⁻¹) with polyethylene moderator
- PMT Gain(@1400 V)2.1x10⁶
- Crystal from ISMA, SICCAS and OPTOMATERIALS tested

Measurement strategy: 5' for Idark+ 15' irradiation +15' after extraction

RIN from thermal neutrons in the hottest region: 60-85 keV. Well inside the Mu2e requirements (RIN< 0.6 MeV)

30/09/15

Mu2e custom SiPMs

Mu2e e

Idark-V curves& Vbr measurement

- 6x6 mm² SiPM from Hamamatsu(13360-6050CS) have been tested in order to:
 - compare $V_{\mbox{\scriptsize br}}$ from data sheet with experimental one
 - measure fluctuation at same overvoltage
- If V>V_{br} I increases faster the linear.Total increase rate of I is between Vⁿ and e^V
- Calculate derivative of I curve in log scale. Local maximum value is V_{br}

I N F N

-0.09158 ± 0.06761

0.1451 ± 0.006767

0.1691 ± 0.00588

-0.2001 ± 0.0835

0.1794 ± 0.01293

52.53 ± 0.006146 0.1644 ± 0.009137

-0.1327 ± 0.06225

0.1497 ± 0.00605

0 1686 + 0 004928

52.5 ± 0.00514

52.52 ± 0.00519

-0.2683 ± 0.06018

0.1645 ± 0.00606

52.44 ± 0.005491

0.1802 + 0.0045

-0.3003 ± 0.07685

0.1576 ± 0.00696

52.41 ± 0.00749

0.1861 ± 0.005766

-1.743 ± 0.1879

0.1414 ± 0.005459

52.18 ± 0.002066

0.1202 ± 0.00803

- Gain SiPM measuring difference between 2 adjacent peaks at different $\Delta V = \pm 200/400/600$ mV

- Automatic test station under construction @ INFN Pisa:
 - 20 SiPMs tested + 5 for reference
 - uniform illumination
 - Temperature monitoring
 - Vacuum 10⁻¹ Torr

ΙΝΓΝ

 $6x6 \text{ mm}^2 \text{ SiPM}$ with ceramic package irradiated with ~ 1 MeV neutron at HZDR Dresden.

- Measure the SiPM response to UV led
- Measure leakage current

NFN

- SiPM temperature kept
 ~stable using a Peltier cell
 and monitored with a
 PT1000
- I from 60 µA up to 12 mA
- The response decreases of

Temperature dependency

- Leakage current and operation voltage measurements performed maintaining a fixed gain
- Measurements in vacuum (@10-4 mbar) with a system of two Peltier cells and a PT1000
- SiPM illuminated with UV led

It is necessary to cool down the SiPM system at 0°C

ΙΝΓΝ

- Results from crystal test.
 Most of the crystals tested meet the Mu2e requirements
 - ✓ LY>100 pe/MeV
 - ✓ LRU<5%
 - ✓ Energy resolution (σ/peak) <20%</p>
 - ✓ RIN<0.6 MeV</p>
- Results from SiPM test:
 - ✓ Good agreement between V_{br} measured and the data sheet
 - Gain and gain spread meet compatible with the requirements
 - ✓ Gain changes due to irradiation are still acceptable for the running experiment. Leakage current too high→ cool down the SiPM
 - ✓ Need to cool down the system at 0°C

- V<<V_{br}: I monotonically increase with V
- V~V_{br}: I increases more rapidly with each voltage step, reaching the highest rate of increase when V = V_{br}
- V>V_{br}: Geiger mode, gain is linearly proportional to ΔV

Silicon Photomultipliers (SiPM)

 Photodetector consisting of pixels connected in parallel. One pixel is a series combination of an Avalanche PhotoDiode (APD) and a quenching resistor

MU2

• Each pixel in the SiPM generates a pulse at the same amplitude when it detects a photon. Pulses generated by multiple pixels create the output signal as a superimposition of the single pixel pulses

- Photon detection efficiency is the product of 3 components:
 - Quantum efficiency: ratio of the number of carriers collected to the number of photons of a given energy incident on the device
 - Avalanche probability: probability that an incident photon starts an avalanche
 - "Filling Factor": ratio between pixel dimension and the total SiPM dimension

NFN

- Black box containing experimental set up
- Blue led (λ =425 nm) driven by a fast pulser
- Polaroid filter
- Custom amplifier x300
- CAEN DT5751

Series comparison

Particle Identification & muon rejection

2.2 events with cosmic muons with 103.5 < P < 105 MeV/c enter the detector bypassing the CRV counters and surviving all analysis cuts.

muon rejection of 200:

combination of tracker and calorimeter informations

E. Diociaiuti | Characterization of crystals and SiPM of the Mu2e electromagnetic calorimeter