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magnetic dipole moment of muon

• torque experienced in external magnetic field 

• spin -> intrinsic magnetic dipole moment 

• experiment measures how fast spin rotates



measurement recipe



old ring, new instrumentation and beam



principles of the experiment



principles of the experiment

1. source of polarized muons 

2. precession proportional to (g – 2) 

3. magic momentum 

4. parity violating decay (positron reports on spin)



1. source of polarized muons

• pion decay into muon 

• it’s parity violating decay 

• spin prefers opposite direction to momentum  
(for positive pion) 

• pions come from protons hitting Li target



2. precession proportional to g – 2
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Figure 1.6: Illustration of the muon spin and momentum vectors for a muon orbiting in a magnetic field
when (a) g 2 and (b) g 2.

National Lab (BNL) experiment described in this thesis.
In the CERN I experiment, polarized muons were injected into a 6 m long magnet. Once in the 1.5 T

magnet, muons traveled horizontally in a spiraling orbit from one end of the magnet to the other, as shown
in Figure 1.7(a). This type of motion was created by carefully shimming the magnetic field to be parabolic
in the vertical direction

B y B0 1 ay by2 (1.29)

where B0 determined the average radius of the orbit, the strength of the gradient a caused each orbit to
advance along the magnet, and a non-zero coefficient b produced a quadratic field, which provided vertical
focusing. The step size of the orbital ’walking’ was gradually increased by increasing the a coefficient along
the length of the magnet. At the magnet exit, the gradient was large enough to allow the muons to escape
from the field. As the muons exited, they were stopped in a methylene-iodide target and the polarization was
determined by measuring the asymmetry of the decay electrons. The amount the muon spin had precessed
relative to the momentum was determined by the amount of time spent in the magnetic field, or in other
words the number of orbits. The number of orbits had a natural variance depending on the exact y-position
at which the muon entered the apparatus. Rather than relying on a forward and backward detector, each with
its own efficiency and characteristics, a pulsed magnetic field was used to alternately rotate the muon spin
by 90o prior to injection. The average asymmetry versus time is plotted in Figure 1.7(b). The data from
CERN I does not visually appear to be much more precise than the Garwin data shown in Figure 1.5(a),
however the CERN I experiment measures the anomaly directly. Therefore, the precision of 3 10 3 on aµ
achieved by the CERN I experiment

aexpµ 1965 0 001 162 5 4300 ppm (1.30)
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g = 2 g > 2



3. magic momentum

• select γ = 29.3, muon momentum 3.094 GeV

• electric quadrupole used for vertical focusing



4. parity 
violating 
decay

• muon -> electron and two neutrinos 

• electron carries information on muon’s spin 

• positron prefers spin direction 

• electron would prefer opposite direction



μe

a lighthouse riding a carousel
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what does a calorimeter see
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1D slices at a fixed energy
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What a calorimeter is supposed to do

1. Measure positron hit time accurately (100 psec above 100 MeV) 

2. Measure deposited energy with resolution better than 5 % at 2 GeV 

3. Energy scale (gain) stability in 1e−3 range, over the course of 700 µsec 

fill where rate varies by 1e4. 

4. 100 % pile-up separation above 5 nsec, and 66 % below 5 nsec.
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Calorimeter test run at SLAC in June 2016



principles of particle detection

PbF2 – stops down the particle, and converts deposited energy into light 
SiPM – reads the light out (counts photons); operates in magnetic fields.
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SNO+ detector,  12m in diameter 

scintillator stops down particles 
10 000  PMT’s read out the light



how SiPM works

invert
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shrink and repeat 
56 000 times

CRT TV set

Photo Multiplier Tube

Silicon Photo Multiplier



other examples of use

• Cerenkov telescopes (CTA) 
single photons, shaping, clipping,  
pole-zero correction 

• hadron calorimeters 
~1000 photons 
Cerenkov, fast scint, or both 

• positron emission tomography  
TOF
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KATRIN neutrino mass exp 

charged particle propagation  
in electro-magnetic field
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timing resolution 25ps at 3GeV

1. time differences within digitizer channels (two pulses in the same channel) 
2. time differences across channels (a single pulse in two channels) 
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reproduced eng resolution 3% at 3GeV

both from data, and photo statistics and electronics contributions
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clusterE
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Mean    19.66
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low QE runs
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1e-3 effects in shower propagation
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timing for angle reconstruction
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Cherenkov photons slower than EM shower propagation



Energy scale (gain) stability on 3 time scales

The goal is in the 1e-3 range 

1. Long term hours, days, years (laser calibration) 

2. within a muon fill which lasts 700 µsec (laser calibration) 

3. pile-up separation of pulses 10 nsec wide (lasers very difficult here)??? 
You come to SLAC.

31



32 s]µtime [
0 20 40 60 80 100 120 140 160 180 200 220 240

0.98

0.985

0.99

0.995

1

1.005

gain sagging with 1,000 times more light 
than physics



sample number
2430 2435 2440 2445 2450 2455 2460 2465 2470

AD
C

 c
ou

nt
s

1000−

500−

0

500

1000

1500

2000

event 7 calo 0 xtal 24 island 3

: 2442.4841t
: 76821E

: 2438.8332t
: 73202E

pedestal: 1757

event 7 calo 0 xtal 24 island 3

pileup separation: double bunches with 
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1. double-pulse fitter 
2. spatial pattern of dep. energy 
3. temporal pattern in multiple crystals 
4. pulse shape
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Next steps: installation at FNAL

Move everything and everybody to FNAL: September 2016 

Calorimeter installation in ring: October 2016 

First beam in Spring 2017. 

Thank you very much!
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