

Charged Lepton Flavour Experiments

Motivation

Charged Lepton Flavour Experiments

$\gamma_1 = 3\pi/8, \gamma_2 = \pi/2$

 $\kappa_1, \kappa_2, \gamma_1, \gamma_2$ symmetry breaking parameters

Charged Lepton Flavour Experiments

Motivation

Motivation

Updated from A. de Gouvea, P. Vogel, arXiv:1303.4097

Observations

Principal observations being sought are:

- lepton flavour violation (LFV)
- lepton number violation (LNV)
- lepton universality violation

At FNAL, J-PARC, KEK, CERN, PSI, TRIUMF

Charged Lepton Flavour Experiments

 $Z \to \mu e$ < 7.5 (7.3) x 10⁻⁷ $\,$: ATLAS (CMS) Now surpasses LEP but implied limit from SINDRUM is 5 x 10⁻¹³ from $\ \mu \to 3e$

 $h
ightarrow \mu e$ implied < 1 x 10⁻⁸ by MEG $~\mu
ightarrow e \gamma$

 $h \to \mu \tau$ < 1.51 (1.43) x 10^-2 $\,$: CMS (ATLAS) 0.84 +/- 0.4% : CMS 0.53 +/- 0.51% : ATLAS

Mark Lancaster : Beauty2016 : 6

ATLAS/CMS : LFV

In H($\mu\tau$) these FV Yukawa coupling limits are stronger than from

dedicated LFV τ decay searches.

Why Muons ?

Not the case for $H(\mu e)$ where muon LFV experiments have much stronger limits.

e.g. Mu2e will be sensitive to BR ($h
ightarrow \mu e$) of 10⁻¹⁰ (vs O(10⁻²) at LHC)

Why Muons ?

Current $au o e \gamma$ limit is 3.3 x 10⁻⁸ and expected to reach 10⁻⁹ at Belle-2/LHCb. Similarly for $au o 3\mu$

Taus though probe the "13" mixing : Is the 3rd generation peculiar ? We need all measurements !!

Lepton Universality

Combined significance > 3σ for the D/ τ measurements

No deviation in e: μ comparison in π/K measurements.

arXiv.org > hep-ph > arXiv:1409.0882

High Energy Physics - Phenomenology

Explaining the Lepton Non-universality at the LHCb and CMS from a Unified Framework

The quiet anomaly

A 7.9σ discrepancy in proton radius measured from "ep" scattering +hydrogen spectroscopy vs muonic hydrogen spectroscopy by CREMA

Charged Lepton Flavour Experiments

Possible explanations

- unexpected QCD corrections in muonic-H (2γ , polarisation)
- error in determination of radius from atomic-H (Q², model dep.)
- new physics (not changing muon g-2)

New data (see arxiv 1509.03235) in next 1-3 years.

- CREMA measurements of muonic-D being analysed now.
- µp vs ep in same experiment (MUSE)
- very low Q² ep (PRAD@JLAB)
- new atomic-H spectroscopy from MPI (2s-4p) and LKB (1s-3s)
- low Q² form factors from ISR MAMI data

Muon LFV Experiments

Statistics far exceeds that from T & LFV Z/h decays at LHC

Charged Lepton Flavour Experiments

\$1B of Muon Experiments

Charged Lepton Flavour Experiments

SM is O(10⁻⁵⁰)

No SM theory systematic How far we can probe is limited by experiment

Experimental Technique

Apply symmetries, translations, rotations,

Charged Lepton Flavour Experiments

Mark Lancaster : Beauty2016 : 16

Current State Of The Art

PSI (Zurich/Switzerland) Facility

 $3x10^7$ "stopped" µ+/sec

MEG Experiment

MEG present limit on $\mu \rightarrow e\gamma$ is $4x10^{-13}$. It is aiming to get to $5x10^{-14}$

MEG Experiment

Charged Lepton Flavour Experiments

MEG Sensitivity determined by LCL

- # of stopped muons : accelerator driven
- Resolution in e⁺ and photon energy and angle, time between them

Charged Lepton Flavour Experiments

Mark Lancaster : Beauty2016 : 21

Charged Lepton Flavour Experiments

Improved efficiency, acceptance, resolution, uniformity

2mm resolution in calorimeter

PDF parameters	Present MEG	Upgrade scenario		
$\sigma_{E_{e^*}}$ (keV)	380	110		
$e^+ \sigma_{\theta} \text{ (mrad)}$	9	5		
$e^+ \sigma_{\phi}$ (mrad)	11	5		
$e^+ \sigma_Z / \sigma_Y$ (core) (mm)	2.0/1.0	1.2/0.7		
$\frac{\sigma_{E_{\gamma}}}{E_{\gamma}}$ (%) w>2 cm	1.6	1.0		
γ position at LXe $\sigma_{(u,v)}$ - σ_w (mm)	4	2		
γ - e^+ timing (ps)	120	80		
Efficiency (%)				
trigger	≈ 99	≈ 99		
y reconstruction	60	60		
e^+ reconstruction	40	95		
event selection	80	85		

Timing counters : tested already in beam.

Current state of the art is 1988 with limit @ 10⁻¹²

Given MEG results (@ 10^{-13}) this only begins to get interesting at 10^{-14} (e.g LHT models) and the aim is to get to 10^{-16} with **Mu3e @ PSI**

Same issues as µ→eγ

- accidental/pile-up backgrounds : $(R\mu/D)^2$ – so DC beam required.

Two μ + decays and fake e- (Bhaba scattering, γ conversion)

- irreducible background : Rµ

As with $\mu \rightarrow e\gamma$ the solution is resolution, resolution, resolution...

Issue as go to v. high rates

Mu3e @ PSI

Improve MS-resolution by using v. thin ($\sim 50\mu$ m) HV-MAPS pixel silicon layers

Staged Detector 2017-2023

MAPS tracker

25µm kapton, 50µm silicon : 0.5 MeV, 100µm resolution

Charged Lepton Flavour Experiments

Scintillating tiles (SiPM) get to 100ps vs 1ns for fibers

Scintillating fibres O(1 ns); Scintillating tiles O(100 ps)

Charged Lepton Flavour Experiments

Processes considered so far suffer, at the highest rates, from accidental backgrounds that scale as $R(\mu)^2$

The "conversion process" has a simple one particle signature. Ee ~ m_{μ} (>> Ee from free muon decay).

Arguably best route to highest sensitivity at high muon rates.

DeeMe, COMET & Mu2e

"extinction"

Significant improvements made possible by:

- pulsed proton beams
- advances in s/c magnets
 & detector resolution

3 components

- 1. Muon production via intense pulsed, proton beam
- 2. Momentum selection of low-p negative muons
- 3. Momentum selection of high-p electrons

Charged Lepton Flavour Experiments

Backgrounds

Largest background is Decay In Orbit (DIO) of stopped muon. In atom gives electrons beyond the free-muon 53 MeV end-point.

- also backgrounds from anti-p, cosmics, radiative pion capture (γ)

Extinction

High Rate Environment (>10¹⁰ μ /s) \triangleq UCL

Signal identification requires excellent resolution at high-rate

COMET @ J-PARC

Phase-I

Phase-II

Event Sample (105 MeV/c runs)

Drift Chamber

Charged Lepton Flavour Experiments

Mu2e @ FNAL

Charged Lepton Flavour Experiments

Both g-2 and Mu2e beamlines from delivery ring to experimental halls are complete

Charged Lepton Flavour Experiments

Charged Lepton Flavour Experiments

dipole moment (ppm)

Field established. Shimming will be completed in summer

Detectors installed

Data : 2017.

Oct 14-2015 \rightarrow Jan 4, 2016

Study of charged leptons has sensitivity to BSM physics extending and complementing the reach of the LHC.

Many new and exciting projects will take data in the next 10 years

- MEG-II : 2017-2019

Summary

- g-2 : 2017-2019
- Mu3e : 2017-2023
- DeeMe : 2017-21
- COMET-I : 2018-19
- Mu2e/COMET-II : 2020-23

that extend the search for CLFV by 1-4 orders of magnitude

Charged Lepton Flavour Experiments

ATLAS/CMS : Majorana u

Charged Lepton Flavour Experiments

Mark Lancaster : Beauty2016 : 46

Sensitivity to heavy neutrinos LCL

BaBar

Charged Lepton Flavour Experiments

Muon LFV

Sensitivity to widest variety of BSM models.

							Different SUSY		
8 <u></u>	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS	←	and non-SUSY
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?		
ϵ_K	*	***	***	*	*	**	***		BSIVI models.
$S_{\psi\phi}$	***	***	***	*	*	***	***		
$S_{\phi K_S}$	***	**	*	***	***	*	?		
$A_{\rm CP}(B\to X_s\gamma)$	*	*	*	***	***	*	?		
$A_{7,8}(B\to K^*\mu^+\mu^-)$	*	*	*	***	***	**	?	+++	Large effects
$A_9(B\to K^*\mu^+\mu^-)$	*	*	*	*	*	*	?		
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*		
$B_s \rightarrow \mu^+ \mu^-$	***	***	***	***	***	*	*		visible but small
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***		
$K_L \rightarrow \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***	*	No sizeable effect
$\mu \rightarrow e \gamma$	***	***	***	***	***	***	***		
$\tau ightarrow \mu \gamma$	***	***	*	***	***	***	***		
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***		
d _n	***	***	***	**	***	*	***		
de	***	***	**	*	***	*	***		
$(g-2)_{\mu}$	***	***	**	***	***	*	?		

W. Altmannshofer, et al Nucl. Phys. B 830 17 (2010)

Process Ratios are Model Dependent

 $\frac{BR(\mu N \to eN)}{BR(\mu \to e\gamma)} = \mathcal{O}(\alpha_{EM}) \text{ but not always...}$ In general in BSM models $10^{-16}_{10^{-8}}$ 10^{-10} 10-14 10-12 10-8 10^{-8} 10^{-10} 10^{-10} BR (μN→eN) α_{EM} 0-12 10^{-12} 10^{-14} 10-14 10^{-16} 10^{-} 10-12 10^{-10} 10^{-14} 10^{-16} BR (μ→eγ)

e.g. "Littlest Higgs model" with T-parity (LHT)

Mu3e: Momentum Resolution

Mu3e:Signature

Charged Lepton Flavour Experiments

Mark Lancaster : Beauty2016 : 51

DeeMe @ J-PARC

Magnet Spectrometer

- 3 GeV J-PARC RCS protons

- beamline and spectrometer to select 100 MeV e-
- 4 MWPCs with $\Delta p=0.5$ MeV

DeeMe

Signal Region: 102.0 -- 105.6 MeV/c

Mu2e/COMET Reach ~ 100 TeV for LQ

Charged Lepton Flavour Experiments

Connection with neutrino mass physics

e.g. TeV-scale Left-right seesaw model

Neutrino mass hierarchy

e.g. Majorana neutrino mass from a SU(2) triplet Higgs field

M. Kakizaki, et al, Phys. Lett. **B566**, 210 (2003)

Motivated by Higgs mass

Sfermions not at TeV scale but: 100 – 1000 TeV with gauginos at a few TeV

Muon g-2 Interest....

arXiv.org > hep-ph > arXiv:1512.06715

High Energy Physics - Phenomenology

750 GeV Diphoton Resonance, 125 GeV Higgs and Muon g-2 Anomaly in Deflected Anomaly Mediation SUSY Breaking Scenario

Fei Wang, Lei Wu, Jin Min Yang, Mengchao Zhang

(Submitted on 21 Dec 2015)

We propose to interpret the 750 GeV diphoton excess in deflected anomaly mediation supersymmetry breaking scenarios, which can naturally predict the coupling between a singlet field and the vector-like messengers. The scalar component (S) of the singlet field can serve as the 750 GeV resonance. The messenger fields, whose masses are of order the gravitino scale, can be as light as F_phi $sim {cal O}(10)$ TeV when the messenger species N_F and the deflection parameter 'd' are moderately large. Such light messengers can induce the large loop decay process S to \gamma\gamma. Our results show that such a scenario can successfully accommodate the 125 GeV Higgs boson, 750 GeV diphoton excess and the muon g-2 without conflicting with the LHC constraints. We also comment on the possible explanations in the gauge mediation supersymmetry breaking scenario.

Comments: 15 pages,1 figure Subjects: High Energy Physics - Phenomenology (hep-ph) Cite as: arXiv:1512.06715 [hep-ph]

arXiv.org > hep-ph > arXiv:1511.07447

High Energy Physics - Phenomenology

Z' models for the LHCb and g-2 muon anomalies

Ben Allanach, Farinaldo S. Queiroz, Alessandro Strumia, Sichun Sun

(Submitted on 23 Nov 2015)

We revisit a class of Z' explanations of the anomalies found by the LHCb collaboration in *B* decays, and show that the scenario is tightly constrained by a combination of constraints: (i) LHC searches for di-muon resonances, (ii) pertubativity of the Z' couplings; (iii) the B_s mass difference, and (iv) and electro-weak precision data. Solutions are found by suppressing the Z' coupling to electrons and to light quarks and/or by allowing for a Z' decay width into dark matter. We also present a simplified framework where a TeV-scale Z' gauge boson that couples to standard leptons as well as to new heavy vector-like leptons, can simultaneously accommodate the LHCb anomalies and the muon g-2 anomaly.

 Comments:
 10 pages, 11 figures

 Subjects:
 High Energy Physics - Phenomenology (hep-ph)

 Report number:
 CETUP2015-028

 Cite as:
 arXiv:1511.07447 [hep-ph]

Charged Lepton Flavour Experiments

Muon g-2

Comparison of SM & BNL Measurement

Charged Lepton Flavour Experiments

Essentially zero in SM : any observation is new physics

Muon EDM

Muon is the only 2nd flav. gen. measurement. and it's free of nuclear / molecular effects

BNL limit is 1.8 x 10⁻¹⁹

Can quickly be improved by x10 and ultimately x100 to 10⁻²¹

Needs non mass-scaling BSM effects to see anything given e⁻ EDM limit