

The Mu2e Experiment at Fermilab

Luca Morescalchi INFN Pisa & University of Siena DIS2016 – Hamburg, Germany, April 13, 2016

Flavor Violation

- We have known for a long time that quarks mix → (Quark)
 Flavor Violation
 - Mixing strengths parameterized by CKM matrix
- In last 20 years we have come to know that neutrinos mix → Lepton Flavor Violation (LFV)

Mixing strengths parameterized by PMNS matrix

• Why not charged leptons?

Charged Lepton Flavor Violation (CLFV)

CLFV in the Standard Model

- Strictly speaking, forbidden in the Standard Model
- Even in v-SM, extremely suppressed

(br~ Δm_v^2 / M_w^2 < 10⁻⁵⁰)

- Any observation will be signal of New Physics
- However, many New Physics models predict rates observable at next generation CLFV experiments

$\mu^{-}AI \rightarrow e^{-}AI$ Conversion

• The muon converts into an electron in the field of a nucleus that is left intact

- The resulting electron has a monochromatic energy slightly below the muon rest mass. For Aluminum $E_{ce} = 104.96$ MeV
- The mu2e goal is to set an upper limit on the branching ratio normalized to the total muon capture rate of:

$$R_{\mu e} = \frac{\Gamma\left(\mu^{-} + \mathrm{N}(\mathrm{A},\mathrm{Z})\right) \to e^{-} + \mathrm{N}(\mathrm{A},\mathrm{Z})}{\Gamma\left(\mu^{-} + \mathrm{N}(\mathrm{A},\mathrm{Z})\right) \to \mathrm{all\ muon\ captures})} \le 6 \times 10^{-17} @ 90\% \text{ C.L.}$$

it represents a 4 order of magnitude improvement on the Sindrum II limit

Probing New Physics with CLFV

Effective Lagrangian

$$L = \frac{m_{\mu}}{(\kappa + 1)\Lambda^2} \overline{\mu} R \sigma_{\mu\nu} e_L F_{\mu\nu} + \frac{\kappa}{(\kappa + 1)\Lambda^2} \overline{\mu}_L \gamma_{\mu} e_L \sum_{q=u,d} \overline{q}_L \gamma^{\mu} q_L$$

- Contact κ , mass scale Λ
- 'Loops', κ<<1
- 'Contact terms', κ>>1
- Mu2e will have sensitivity to Λ (mass scale) up to thousands of TeV beyond any existing accelerator!
- Mu2e is sensitive over the entire κ range

Mu2e Strategy

Mu2e Beam Structure

• Mu2e uses a pulsed proton beam and a delayed selection window to suppress the prompt backgrounds coming from proton interactions and pion captures

 A proton extinction factor at the level of 10⁻¹⁰ is needed to avoid out-ofbunch protons that can generate prompt background inside the selection windows.

Experimental Setup

- Production Solenoid (PS):
 - 8 GeV protons interact with a tungsten target to produce mostly π and μ (from π decay)
 - Graded magnetic field reflects slow forward $\pi\text{-}$ and $\mu\text{-}$

about 25 meters end-to-end

• Transport Solenoid (TS):

-Captures π- and subsequent μ-;
 -Momentum- and sign-selects beam

- Detector Solenoid (DS):
 - Stops $\mu\text{-}$ in the target and houses the detector system

The Mu2e Detector

Graded field reflects in the detector region a fraction of conversion electrons emitted on the wrong side, increasing acceptance.

Tracker:

- High precision momentum measurement
- To identify the conversion electron

Stopping Target:

- 34 Al foils (864 ns lifetime)
- 1.6 x 10⁻³ stopped μ per proton on target

Electromagnetic Calorimeter:

- Energy, time and position measurements
- Particle identification to reject muons

Tracking System

- Low mass straw drift tubes tracker with tubes transverse to the solenoid axis
 - 20k tubes 5 mm diameter, 80/20 Ar/CO2 gas mixture
 - 15 μm thick straw walls, length 430-1120 mm, dual ended readout
 - 18 stations
 - Inner 38 cm uninstrumented
 station

• Expected momentum resolution better than 200 keV/c at the conversion energy

Calorimeter System

- High granularity crystal based calorimeter:
 - 2 disks separated by 75 cm
 - 1300 CsI crystals, each 3.4x3.4x20 cm³
 - Inner (Outer) radius of 37.4 (70) cm
 - Double readout with 2 MPPC for redundancy
- Expected performances:
 - $\Delta E/E < 10\%$ and $\Delta t < 500$ ps
 - Position resolution of O(1 cm)

undoped Csl

Calorimeter Prototype

- A small calorimeter prototype has been built and tested in Frascati during April 2015
 - 3x3 matrix of undoped CsI crystals 3x3x20 cm³ coupled with Hamamatsu MPPC
 - Tested under electrons beam from 80 to 120 MeV

Prototype performances

• The obtained energy response and the time resolution well match the calorimeter requirements

 Another test beam with a larger prototype is planned for the end of the year

Cosmic-Ray Veto System

Cosmic Ray Veto System:

- 4 layers of scintillators separated by 10 mm absorber
- Read-out both ends of each fiber with SiPM
- Covers the entire DS and half TS
- Veto inefficiency < 10⁻⁴

Main Mu2e Backgrounds

- 1. μ Decay-in-Orbit (DIO)
- 2. Cosmic-ray induced
- 3. Radiative pion capture (RPC)
- 4. Anti-proton induced

DIO Background

- For decay-in-orbit muons, the maximum energy of the electron is equal to the energy of a conversion electron
- Near the endpoint the high energy tail falls as (Ece–Ee)⁵
- 10⁻¹⁷ of the spectrum is within 1 MeV on left the endpoint
- An excellent momentum resolution is needed to suppress this background

Main Mu2e Backgrounds

- 1. μ Decay-in-Orbit (DIO)
- 2. Cosmic-ray induced
- 3. Radiative pion capture (RPC)
- 4. Anti-proton induced

Cosmic Rays Background

• Cosmic rays can:

- 1. interact in the detector material producing 105 MeV delta rays
- 2. be trapped by the graded magnetic field and directly mimic a conversion electron

• While for 1. the CR veto is enough, to keep 2. at a reasonable level is needed another 200 muons rejection factor

Calorimeter Particle ID

• To distinguish cosmic muons from CE, the time difference between the tracker and the calorimeter is combined with the e/p ratio in a likelihood

 The requested rejection factor is obtained with an efficiency on the signal of about 95%

Main Mu2e Backgrounds

- 1. μ Decay-in-Orbit (DIO)
- 2. Cosmic-ray induced
- 3. Radiative pion capture (RPC)
- 4. Anti-proton induced

RPC Background

- Muons are produced from pions decay, therefore there are residual pions in the muon beam
- Radiative π Capture:

$$\pi^{-}AI \rightarrow Mg^{*} + \gamma$$

- Pions stop at the target and promptly annihilate on the nucleus
- E_{γ} extends out to $\sim m_{\pi}$
- Asymmetric $\gamma \longrightarrow e^+e^-$ pair production
- 2% of total π captures
- Mitigated by pulsing the proton beam and defining a delayed signal timing window

Main Mu2e Backgrounds

- 1. μ Decay-in-Orbit (DIO)
- 2. Cosmic-ray induced
- 3. Radiative pion capture (RPC)
- 4. Anti-proton induced

Anti-Proton Background

- Proton beam is just above antiproton production threshold:
 - These low momentum antiprotons wander slowly until they annihilate
 - Annihilations produce high multiplicity final states e.g. π⁻ can undergo RPC to yield a background electron
- To stop antiprotons, two 200 um thick Beryllium absorber are placed at the entrance and in the middle of the Transport Solenoid

Transport solenoid - top view

Mu2e Backgrounds

(6.8x10¹⁷ stopped μ in 6x10⁷ s of beam time)

Category	Background process		Estimated yield
			(events)
Intrincia	Muan dagay in arhit (DIO)		0.100 0.002
Intrinsic	Muon decay-in-orbit (DIO)		0.199 ± 0.092
	Muon capture (RMC)		$0.000 \stackrel{+0.004}{_{-0.000}}$
Late Arriving	Pion capture (RPC)		0.023 ± 0.006
	Muon decay-in-flight (µ-DIF)		< 0.003
	Pion decay-in-flight (π -DIF)		$0.001 \pm < 0.001$
	Beam electrons		0.003 ± 0.001
Miscellaneous	Antiproton induced		0.047 ± 0.024
	Cosmic ray induced		0.092 ± 0.020
		Total	0.37 ± 0.10

Designed to be nearly background free Upper Limit < 6 x 10⁻¹⁷ @ 90% C.L.

Summary

- ✓ Mu2e will improve the current limit on the muon conversion by 4 orders of magnitude
- ✓ If signal is found, it will be proof of new Physics and it will provide data complementar to LHC and to the other CLFV experiments
- ✓ If no signal is found, it will set constrains on mass scale up to thousands of TeV
- ✓ R&D phase is completed for all the subdetectors
- ✓ Test beams of first large scale prototypes are scheduled for this year
- ✓ Data taking will start in 2021

Backup Slides

Other CLFV Predictions

ratio	LHT	MSSM (dipole)	MSSM (Higgs)	
$\left \frac{Br(\mu^- \rightarrow e^- e^+ e^-)}{Br(\mu \rightarrow e\gamma)} \right $	0.021	$\sim 6\cdot 10^{-3}$	$\sim 6 \cdot 10^{-3}$	
$\frac{Br(\tau^- \to e^- e^+ e^-)}{Br(\tau \to e\gamma)}$	0.040.4	$\sim 1 \cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$	arXiv
$\frac{Br(\tau^- \rightarrow \mu^- \mu^+ \mu^-)}{Br(\tau \rightarrow \mu \gamma)}$	0.040.4	$\sim 2\cdot 10^{-3}$	0.060.1	6060:/
$rac{Br(au^- ightarrow e^- \mu^+ \mu^-)}{Br(au ightarrow e\gamma)}$	0.040.3	$\sim 2\cdot 10^{-3}$	0.020.04	.5454
$rac{Br(au^- ightarrow \mu^-e^+e^-)}{Br(au ightarrow \mu\gamma)}$	0.040.3	$\sim 1\cdot 10^{-2}$	$\sim 1 \cdot 10^{-2}$	v2[hep
$\frac{Br(\tau^-{\rightarrow}e^-e^+e^-)}{Br(\tau^-{\rightarrow}e^-\mu^+\mu^-)}$	0.82.0	~ 5	0.3 <mark>0</mark> .5	p-ph]
$\frac{Br(\tau^-\!\rightarrow\!\mu^-\mu^+\mu^-)}{Br(\tau^-\!\rightarrow\!\mu^-e^+e^-)}$	0.71.6	~ 0.2	510	
$rac{R(\mu \mathrm{Ti} ightarrow e \mathrm{Ti})}{Br(\mu ightarrow e \gamma)}$	$10^{-3} \dots 10^{2}$	$\sim 5\cdot 10^{-3}$	0.080.15	

M.Blanke, A.J.Buras, B.Duling, S.Recksiegel, C.Tarantino

Table 3: Comparison of various ratios of branching ratios in the LHT model (f = 1 TeV)and in the MSSM without [92, 93] and with [96, 97] significant Higgs contributions.

- Relative rates are model dependent
- Measure ratios to pin-down theory details

L. Morescalchi – INFN Pisa

Stopping Target Monitor

Figure 7.18. Preliminary singles germanium spectrum from the AlCap experiment at PSI. When muons stop in aluminum, they capture on the nucleus 60% of the time. A fraction of the captures produce ²⁷Mg in the ground state, which has a half-life of 9.5 minutes. In the decay, an 844 keV gamma is produced 72% of the time.

- Need a high precise gamma detector (HpGe)
- Energy of gamma ray is unique to the detector
- Detecting the delayed gamma rays eliminate problems related to beam flash
- Proton beam structure is 0.5 s on followed by 0.8 s idle. Gamma spectrum wil be acquired during idle time.
- HpGe should view the target far from the source and beyond DS

- Thin foils in the debuncher \rightarrow Mu2e production target transport line (fast feedback)
- Off-axis telescope looking at the production target (slow feedback timescale of hours)

Mu2e \rightarrow Mu2e-2

1) Depending on the beam Structure available:

 → study Z dependence if signal is observed
 2) If no signal is observed
 Use x 10 events in Mu2e-2

Minor modifications of the detector \rightarrow BR < 6 x 10⁻¹⁸

Figure 3: Target dependence of the $\mu \rightarrow e$ conversion rate in different single-operator dominance models. We plot the conversion rates normalized to the rate in Aluminum (Z = 13) versus the atomic number Z for the four theoretical models described in the text: D (blue), S (red), $V^{(\gamma)}$ (magenta), $V^{(Z)}$ (green). The vertical lines correspond to Z = 13 (Al), Z = 22 (Ti), and Z = 83 (Pb).