Design, R&D and status of the crystal calorimeter for the Mu2e experiment

Raffaella Donghia Roma Tre University and LNF – INFN

May 12, 2016 XVII LNF Spring School "Bruno Touschek"

- CLFV
 - The muon sector
- The Mu2e apparatus
 - Detector Layout
- The crystal Calorimeter
 - Test results
- Conclusions

Muon-to-electron conversion is a charged lepton flavor violating process (CLFV)

Even in the SM, neutral LFV implies CLFV through neutrino mixing ν_{μ}

However, CLFV processes are strongly suppressed in the SM: BR($\mu \rightarrow e \gamma$) < 10⁻⁵⁴

New Physics can enhance CLFV rates to observable values

Observation of CLFV: unambiguous sign of NP

Muon-CLFV history

Production Target / Solenoid (PS)

- 8 GeV Proton beam strikes target, producing mostly pions
- Graded magnetic field contains backwards pions/muons and reflects slow forward pions/muons

Transport Solenoid (TS)

- Selects low momentum, negative muons
- Antiproton absorber in the mid-section

Detector Solenoid (DS)

- Capture muons on Al target
- Measure momentum in tracker (with a resolution better than 120 keV @ 100 MeV) and energy in calorimeter
- CRV to veto Cosmic Rays event

Simulated performances

Raffaella Donghia - 4th Young Researchers Workshop

Calorimeter Requirements

In order to add redundancy to this "super-rare" search, the calorimeter has to add complementarity qualities to the tracker:

- Large acceptance for CE
- Independent measurement of **energy / time / position**
- PID capabilities
- Independent trigger
- "seeds" to improve track finding efficiency at high occupancy

In order to do so the calorimeter should provide:

- energy resolution σ_E/E of O(5 %)
- timing resolution $\sigma_{(t)} < 500$ ps
- position resolution < 1 cm
- Crystals survive a radiation dose of 100krad and a neutron fluence of 10¹²n/cm²
- Photo-sensors survive a neutron fluence of 3×10¹¹ n_1MeV/cm²

Track seeding

Speed and efficiency of tracker reconstruction is improved by selecting the calorimeter clusters and the tracker hits comparable with the time ($|\Delta T| < 50$ ns) and azimuthal angle of calorimeter clusters

500 - 1695 ns window

± 50 ns around conversion electron

Calorimeter

- 2 SiPMs/crystal (2800 total)
- Analog FEE and digital electronics located in near-by electronics crates

- 2 annular disks with 1400 square crystals (34 x 34 x 200) mm³
- $R_{IN} = 351 \text{ mm}, R_{OUT} = 660 \text{ mm},$ Depth = 10 X₀ (200 mm)
- Distance 70 cm

Crystals and Sensors choice

	LYSO	ВаБ	CsI
Radiation Length X ₀ [cm]	1.14	2.03	1.86
Light Yield [% NaI(Tl)]	75	4/36	3.6
Decay Time[ns]	40	0.9/650	30
Photosensor	APD	RMD APD	SiPM
Wavelength [nm]	402	220/300	310

Csl(pure)

- Adequate radiation hardness
- Slightly hygroscopic
- 30 ns emission time, small slow component.
- Emits @ 310 nm.
- Comparable LY of fast component of BaF₂.
- Lower cost (6-8 \$/cc)

Meeting the requirements (1)

- Simulation performed as a function of LY and many other variables \rightarrow CsI+SIPM match requirements
- Test beam with e⁻ @ BTF, LNF 80 to 130 MeV 3x3 array of 30x30x200 mm³ CsI + MPPC used
- Good energy (7%) and timing (110 ps) resolution

Raffaella Donghia - 4th Young Researchers Workshop

Crystals have been tested up to 100 krad and 10¹² n/cm² with 14 MeV neutrons.

→ No major issues/damages observed (LY drop 40% @ 100 krad)

 \rightarrow Radiation hardness will be part of our QA test procedure

→ Effect of thermal neutrons on Radiation Induced Current being investigated

- \rightarrow No problems with dose
- → With neutrons, sensors are still working but leakage current increases to high values
- \rightarrow Cooling photosensors to 0 C required.

- Mu2e is a CLVF first-class experiment looking for NP BSM with high complementarity to other programs while increasing reach and diversification in models testing
- Mu2e will improve previous conversion experiment of 4 orders of magnitude and probe mass scales up to hundreds of TeV.
- < 10 years Timeline for completion of first phase.
- Mu2e has completed the CD-2 and CD3 for the long lead items
 - \rightarrow Construction of the solenoids will start next year.
 - \rightarrow Detector Review in spring to freeze detector with CD3 in summer 2016
 - → Construction period 2017-2019, followed by installation in 2019 2020
- Mu2e-2 phase planned, increasing (x 10) intensity and sensitivity!

Raffaella Donghia Roma Tre University and LNF – INFN

XVII LNF Spring School "Bruno Touschek

Why muon conversion is unique?

Mu₂e

all 90% CL

excluded SINDRUM-II

 κ

100

 $CR(\mu N \rightarrow eN \text{ on } Al) < 6 \times 10^{-10}$

 $CR(\mu N \rightarrow eN \text{ on Al}) < 6 \times 10^{-17}$

 $CR(\mu N \rightarrow eN \text{ on } Au) < 6 \times 10^{-13}$

-14

MEG

MEG

0.1 10 \rightarrow If MEG does not observe a signal, MU₂E/COMET have still a reach to do so.

Sensitivity to λ (mass scale) up to hundreds of TeV beyond any current existing accelerator

CLFV in the muon sector

- The Mu2e experiment searches for muon-to-electron conversion in the coulomb field of a nucleus: $\mu^{-}Al \rightarrow e^{-}Al$
- μ -e is a CLFV process, similar but complementary to other CLFV processes as $\mu \rightarrow e\gamma$ and $\mu \rightarrow 3e$
- It is a process strongly suppressed in the SM, but NP could enhance CLFV rates to observable values
 - SO(10) SUSY (L. Calibbi et al., hep-ph/0605139)

- Higgs triplet model (M. Kakizaki et al., PLB 566)
- Littlest Higgs with T-parity (M. Blanke et al., ActaPhys.Polon.B 41:657)
- Scalar Leptoquarks (J.M. Arnold et al., Phys.Rev.D 88 035009)
- Left-Right symmetric model (C.H.Lee et al., Phys.Rev.D 88, 093010)

- Muon decay in orbit (DIO)
- Radiative pion capture (RPC) $\pi^{-}N \rightarrow \gamma N', \gamma \rightarrow e^{+}e^{-} \text{ and } \pi^{-}N \rightarrow e^{+}e^{-}N'$
 - Antiprotons: produce pions when they annihilate in the target .. antiprotons are negative and they can be slow!
- Pion/muon decay in flight
 - Electrons from beam
 - Cosmic rays

DIO background

□ The DIO background is the most difficult one.

Electron energy distribution from the decay of bound muons is a (modified) Michel spectrum:

→ Presence of atomic nucleus and momentum transfer create a recoil tail with a fast falling slope close to the endpoint

→ To separate DIO endpoint from CE line we need a high Resolution Spectrometer

Czarnecki et al., Phys. Rev. D 84, 013006 (2011) arXiv:1106.4756v2

12/05/2016

Raffaella Donghia - 4th Young Researchers Workshop

Beam structure → prompt background

Use the fact that muonic atomic lifetime >> prompt background
 Need a pulsed beam to wait for prompt background to reach acceptable levels
 Fermilab provides the beam we need !

□ OUT of time protons are also a problem.

To keep associated background low we need proton extinction of 10⁻¹⁰ :

proton extinction (between pulses) \rightarrow # protons out of beam/# protons in pulse

Accelerator Scheme & Proton extinction

- Booster: batch of 4×10¹² protons every 1/15th second
- Booster "batch" is injected into the Recycler ring and re-bunched into 4 bunches
- These are extracted one at a time to the Delivery ring
- As a bunch circulates, protons are extracted to produce the desired beam structure → bunches of ~3x10⁷ protons each, separated by 1.7 µs

Proton Extinction

achieving 10⁻¹⁰ is hard; normally get 10⁻² – 10⁻³

- Internal (momentum scraping) and bunch formation in Accumulator
- External: oscillating (AC) dipole

Calculations based on accelerator models That take into account collective effects Shows that this combination gets $\sim 10^{-12}$

- Graded field "reflects" downstream a fraction of conversion electrons emitted upstream (isotropic process)
- For the sensitivity goal $\rightarrow \sim 6 \ge 10^{17}$ stopped muons for 3 years run $\rightarrow 10^{10}$ stopped muon/s (10 GHz)

Tracker system

- Tracker is a low mass straw drift tubes design with tubes transverse to secondary beam
- 15 μm thick straw walls, 5 mm diameter, dual-ended readout, length 430 – 1120 mm.
- It must operate in vacuum
- ~ 20000 tubes arranged in planes on stations,
- The tracker has 18 stations.

• Tracking at high radius ensures operability: beam flash produces a lot of low momentum particles, large DIO background. Most of background miss the tracker.

Calorimeter System (1)

Calorimeter requirements:

- \rightarrow Particle Identification to distinguish e/mu
- \rightarrow Seed for track pattern recognition
- \rightarrow Tracking independent trigger
- \rightarrow Work in 1 T field and 10⁻⁴ Torr vacuum
- \rightarrow RadHard up to 30 krad, 10¹² n/cm²/year

Calorimeter choice:

High granularity crystal based calorimeter with:

- \rightarrow σ/E of O(5%) and Time resolution < 500 ps
- \rightarrow Position resolution of O(1 cm)
- \rightarrow almost full acceptance

for CE signal @ 100 MeV

Disk geometry

- Square crystals
- Charge symmetric, can measure $\mu^- N \rightarrow e^+ N$

Two disks separated by $\frac{1}{2}$ wavelength (70 cm)

Calorimeter System (2)

The Calorimeter consists of two disks with 1650 BaF₂ square crystals (30x30x200) mm³

- **R**_{IN} = 351 mm, R_{OUT} = 660 mm, Depth = 10 X₀ (200 mm)
- Each crystal readout by two SL APDs (9x9 mm²)
- Analog FEE and digital electronics located on calo
- Radioactive source and laser systems provide absolute calibration and monitoring capability.

To reduce the slow BaF_2 component at higher wavelengths, a Caltech/JPL/RMD consortium formed to develop a RMD APD into a superlattice APD with high Q.E. @ 220 nm that incorporates also an Atomic Layer Deposition antireflection filter to reduce efficiency for $\lambda > 300$ nm.

Prototypes with LYSO+APD, CsI+MPPC built Next one with $BaF_2 + SL$ APDs in progress

Good progresses on FEE and mechanics

Basic reconstruction scheme

Reconstructable tracks

Tracking reconstruction based on **BABAR Kalman Filter algorithm**

No significant contribution of mis-reconstructed background

Momentum resolution for CE

core σ~120 keV tail σ~175 keV (2.5%)

(assuming ~10 GHz muon stops, 6x10¹⁷ stopped muons in 6x10⁷ s of beam time)

Category	Background process	Estimated yield
		(events)
Intrinsic	Muon decay-in-orbit (DIO)	0.199 ± 0.092
	Muon capture (RMC)	$0.000^{+0.004}_{-0.000}$
Late Arriving	Pion capture (RPC)	0.023 ± 0.006
	Muon decay-in-flight (µ-DIF)	< 0.003
	Pion decay-in-flight (π -DIF)	$0.001 \pm < 0.001$
	Beam electrons	0.003 ± 0.001
Miscellaneous	Antiproton induced	0.047 ± 0.024
	Cosmic ray induced	0.092 ± 0.020
	Т	Total 0.37 ± 0.10

Discovery sensitivity accomplished by suppressing backgrounds to < 0.5 event total

Upper Limit < 6 x 10⁻¹⁷ @ 90% C.L.

(WhatNext?) Mu2e \rightarrow Mu2e-2

Project-X re-imagined to match Budget constraints:

1) PIP-2 plans:

- \rightarrow 1 MW at LNBF at start (2025)
- \rightarrow 2 MW at regime at LNBF
- \rightarrow x 10 at Mu2e

Projectx-docdb.fnal.gov/cgi-bin/ ShowDocument?docid=1232 CLVF-snowmass \rightarrow Arxiv.1311.5278 Mu2e-2 \rightarrow Arxiv.1307.1168v2.pdf

2) Depending on the beam Structure available:

→ study Z dependence if signal is observed

3) If no signal is observed

Use x 10 events in Mu2e-2

```
Minor modifications of the detector \rightarrow BR < 6 x 10<sup>-18</sup>
```

V. Cirigliano, R. Kitano, Y. Okada, P. Tuzon., arXiv:0904.0957 [hep-ph] Phys.Rev. D80 (2009) 013002

Figure 3: Target dependence of the $\mu \rightarrow e$ conversion rate in different single-operator dominance models. We plot the conversion rates normalized to the rate in Aluminum (Z = 13) versus the atomic number Z for the four theoretical models described in the text: D (blue), S (red), $V^{(\gamma)}$ (magenta), $V^{(Z)}$ (green). The vertical lines correspond to Z = 13 (Al), Z = 22 (Ti), and Z = 83 (Pb).

A Caltech/JPL/RMD consortium formed to develop a Large area RMD APD **into a super-lattice APD with high Q.E. @ 220 nm** incorporating also **an Atomic Layer Deposition antireflection filter** to reduce efficiency for wavelength > 300 nm.

- ✓ 60% QE @ 220 nm
 ✓ ~ 0.1 % QE @ 300 nm
- capacitance ~ 60 pF
 (1/5 of Ham S8664)
- ✓ HV ~ 1800 V
- ✓ Operation Gain ~ 500
- ✓ Decay time ~ 25 ns.

CsI Crystals

		BaF ₂	CsI	
Radiation Length X ₀ [cm]	1.14	2.03	1.86	
Light Yield [% NaI(Tl)]	75	4 /36	3.6	
Decay Time[ns]	40	0.9 /650	20	
Photosensor	APD	R&D APD	SiPM	
Wavelength [nm]	402	220 /300	310	

CDR **LYSO**

- Radiation hard. not hygroscopic
- Excellent LY
- Tau = 40ns
- Emits @ 420 nm,
- Easy to match to APD.
- High cost > 40/cc

Barium Fluoride BASELINE-TDR

(BaF₂)

- Radiation hard, not hygroscopic
- very fast (220 nm) scintillating light
- Larger slow component at 300 nm. should be suppress for high rate capability
- Photo-sensor should have extended UV sensitivity and be "solar"-blind
- Medium cost 10\$/cc

Csl(pure)

- Baseline for EDR Not too radiation hard
- Slightly hygroscopic
- 15-20 ns emission time
- Emits @ 320 nm.
- Comparable LY of fast component of BaF₂.
- Cheap (6-8 \$/cc)

The basic SIPM element (pixel) is a combination of the Geiger-APD and quenching resistor

The PDE of UV-enhanced MPPC is higher than the standard one:

- **30-40% @ 310 nm** (CsI pure wavelength)
- with new silicon resin window
- Gain ~ 10^{6}

Raffaella Donghia - 4th Young Researchers Workshop

LYSO Legacy

CsI+MPPC backup option

The atomic, nuclear, and particle physics of μ^- drive the design of the experiment

Raffaella Donghia - 4th Young Researchers Workshop

If SUSY seen at LHC \rightarrow rate ~10⁻¹³

Implies ~ 40-50 signal events with negligible background in Mu2e for many SUSY models.

L. Calibbi et al., hep-ph/0605139

Complementary with the LHC experiments while providing models' discrimination

Other CLFV Predictions

Wi.Dialike, A.J.Dullas, D.Dulling, S.Neckslegel, C.Ialalitillo						
ratio	LHT	MSSM (dipole)	MSSM (Higgs)			
${Br(\mu^- ightarrow e^- e^+ e^-) \over Br(\mu ightarrow e \gamma)}$	0.021	$\sim 6\cdot 10^{-3}$	$\sim 6\cdot 10^{-3}$			
$\frac{Br(\tau^-{\rightarrow}e^-e^+e^-)}{Br(\tau{\rightarrow}e\gamma)}$	0.040.4	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$			
$\frac{Br(\tau^-\!\!\rightarrow\!\!\mu^-\mu^+\mu^-)}{Br(\tau\!\rightarrow\!\!\mu\gamma)}$	0.040.4	$\sim 2\cdot 10^{-3}$	0.060.1			
$\frac{Br(\tau^-{\rightarrow}e^-\mu^+\mu^-)}{Br(\tau{\rightarrow}e\gamma)}$	0.04 0.3	$\sim 2\cdot 10^{-3}$	0.020.04			
$\frac{Br(\tau^-\!\!\rightarrow\!\!\mu^-e^+e^-)}{Br(\tau\!\rightarrow\!\!\mu\gamma)}$	0.04 0.3	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$			
$\frac{Br(\tau^-{\rightarrow}e^-e^+e^-)}{Br(\tau^-{\rightarrow}e^-\mu^+\mu^-)}$	0.82.0	~ 5	0.3 0.5			
$\frac{Br(\tau^-\!\rightarrow\!\mu^-\mu^+\mu^-)}{Br(\tau^-\!\rightarrow\!\mu^-e^+e^-)}$	$0.7.\dots 1.6$	~ 0.2	510			
$\frac{R(\mu \mathrm{Ti} \rightarrow e \mathrm{Ti})}{Br(\mu \rightarrow e \gamma)}$	$10^{-3}\dots10^2$	$\sim 5\cdot 10^{-3}$	0.080.15			

M Planka A | Puras P Duling S Packsingal C Tarantina

Table 3: Comparison of various ratios of branching ratios in the LHT model (f = 1 TeV)and in the MSSM without [92, 93] and with [96, 97] significant Higgs contributions.

Relative rates are model dependent

Measure ratios to pin-down theory details

TABLE XII: LFV rates for points **SPS 1a** and **SPS 1b** in the CKM case and in the $U_{e3} = 0$ PMNS case. The processes that are within reach of the future experiments (MEG, SuperKEKB) have been highlighted in boldface. Those within reach of post-LHC era planned/discussed experiments (PRISM/PRIME, Super Flavour factory) highlighted in italics.

	SPS	8 1a	SPS	8 1b	\mathbf{SP}	S 2	SP	S 3	Future
Process	CKM	$U_{e3} = 0$	CKM	$U_{e3}=0$	CKM	$U_{e3} = 0$	CKM	$U_{e3} = 0$	Sensitivity
$BR(\mu \rightarrow e \gamma)$	$3.2 \cdot 10^{-14}$	$3.8 \cdot 10^{-13}$	$4.0 \cdot 10^{-13}$	$1.2 \cdot 10^{-12}$	$1.3 \cdot 10^{-15}$	$8.6 \cdot 10^{-15}$	$1.4 \cdot 10^{-15}$	$1.2\cdot10^{-14}$	$O(10^{-14})$
$BR(\mu \rightarrow e e e)$	$2.3 \cdot 10^{-16}$	$2.7 \cdot 10^{-15}$	$2.9 \cdot 10^{-16}$	$8.6 \cdot 10^{-15}$	$9.4 \cdot 10^{-18}$	$6.2 \cdot 10^{-17}$	$1.0 \cdot 10^{-17}$	$8.9 \cdot 10^{-17}$	$O(10^{-14})$
$CR(\mu \rightarrow e \text{ in Ti})$	$2.0 \cdot 10^{-15}$	$2.4 \cdot 10^{-14}$	$2.6 \cdot 10^{-15}$	$7.6 \cdot 10^{-14}$	$1.0 \cdot 10^{-16}$	$6.7 \cdot 10^{-16}$	$1.0 \cdot 10^{-16}$	$8.4 \cdot 10^{-16}$	$O(10^{-18})$
$BR(\tau \rightarrow e \gamma)$	$2.3 \cdot 10^{-12}$	$6.0 \cdot 10^{-13}$	$3.5 \cdot 10^{-12}$	$1.7 \cdot 10^{-12}$	$1.4 \cdot 10^{-13}$	$4.8 \cdot 10^{-15}$	$1.2 \cdot 10^{-13}$	$4.1 \cdot 10^{-14}$	$O(10^{-8})$
$BR(\tau \rightarrow e e e)$	$2.7 \cdot 10^{-14}$	$7.1 \cdot 10^{-15}$	$4.2 \cdot 10^{-14}$	$2.0 \cdot 10^{-14}$	$1.7 \cdot 10^{-15}$	$5.7 \cdot 10^{-17}$	$1.5 \cdot 10^{-15}$	$4.9 \cdot 10^{-16}$	$O(10^{-8})$
$BR(\tau \rightarrow \mu \gamma)$	$5.0 \cdot 10^{-11}$	$1.1 \cdot 10^{-8}$	$7.3 \cdot 10^{-11}$	$1.3 \cdot 10^{-8}$	$2.9 \cdot 10^{-12}$	$7.8 \cdot 10^{-10}$	$2.7 \cdot 10^{-12}$	$6.0 \cdot 10^{-10}$	$O(10^{-9})$
${\rm BR}(\tau \to \mu \mu \mu)$	$1.6\cdot 10^{-13}$	$3.4\cdot10^{-11}$	$2.2\cdot 10^{-13}$	$3.9\cdot 10^{-11}$	$8.9\cdot 10^{-15}$	$2.4\cdot 10^{-12}$	$8.7\cdot 10^{-15}$	$1.9\cdot 10^{-12}$	$\mathcal{O}(10^{-8})$

- These are SuSy benchmark points for which LHC has discovery sensitivity
- Some of these will be observable by MEG/Belle-2
- All of these will be observable by Mu2e

Leptoquarks

Presenza di leptoquarks alla scala del TeV potrebindurre processi CLFV con una costante di accoppiamento λ .

- Rosso: MEG-II
- Blu: Mu2e

M. Kakizaki et al., PLB566 (2003) 210

12/05/2016

Raffaella Donghia - 4th Young Researchers Workshop

Inverted hierarchy Normal hierarchy Higgs triplet model 10-12 MEG 10 10-1 $\mu \rightarrow eee$ $\mu N \rightarrow eN$ 10-14 BR 10 g 10 10-15 $\mu \rightarrow e \gamma$ Mu3e 10 10 Mu₂e Flavor violating 10-17 10-17 - 0.2 - 0.1 0.1 0.2 - 0.2 - 0.1 0.1 0.2 $|U_{e3}| \cos \delta$ Yukawa couplings $|U_{e3}| \cos \delta$

Left-right symmetric models

Stopping Target Monitor

Figure 7.18. Preliminary singles germanium spectrum from the AlCap experiment at PSI. When muons stop in aluminum, they capture on the nucleus 60% of the time. A fraction of the captures produce ²⁷Mg in the ground state, which has a half-life of 9.5 minutes. In the decay, an 844 keV gamma is produced 72% of the time.

- Need a high precise gamma detector (HpGe)
- Energy of gamma ray is unique to the detector
- Detecting the delayed gamma rays eliminate problems related to beam flash
- Proton beam structure is 0.5 s on followed by 0.8 s idle. Gamma spectrum wil be acquired during idle time.
- Hpge should view the target far from the source and beyond DS

