The Mu2e Trigger system

Yale University

COLUMN ACTIV

G. Pezzullo

Why do we need a trigger?

- select the interesting events of interests for further analysis
- rate of data accumulated in the experiment is too high to practically record directly to mass media
- effort for storing and filtering the large volume of data is time consuming and expensive

Enteentie

Early accelerator expts: Bubble chambers

- Bubble chamber, Cloud chambers...
 DAQ was a stereo photograph!
 - actually no trigger
 - each expansion was photographed based on accelerator cycle
 - ➡High level trigger was human
 - slow repetition rate
 - only most common processes were observed
- Emulsions still used in some neutrino experiments
 - events selected with electronically readout detectors

FNAL - August 10 2018

I964 Cronin & Fitch: CP violation experiment

Early fixed target experiments

- K₂⁰ mesons produced from 30 GeV protons on Be target
- two arm spectrometer with spark chambers, Cherenkov counters and scintillators for triggering
- Spark chambers require fast (~20 ns) HV pulse to develop spark, followed triggering cameras to photograph tracks
- Trigger on coincidence scintillators and water Cherenkov counters
- Only one trigger level
- Dead time incurred while film advances

Efficiency and dead time

• Goal of the Trigger and DAQ is to maximize data for desired process to storage for analysis with minimal cost

$$\epsilon = \epsilon_{\text{operations}} \cdot \epsilon_{\text{tirgger}} \cdot (1 - deadtime)$$

• Relevant efficiency is for events that will be useful in the analysis:

 $\epsilon_{\text{trigger}} = N_{\text{good}}(\text{accepted})/N_{\text{good}}(\text{produced})$

 Deadtime incurred due to fluctuations when rate into a stage of trigger (or readout) approaches the rate in can handle. Case of no buffering:

deadtime = Rate_in · Execution_time

• Buffering incoming data reduces deadtime

➡if Incoming_rate > I/Execution_time, dead no matter what

Experimental constrains

- Trigger specs are driven by the operating environment:
 - timing structure of the beam
 - production rate of the physics signal of interest
 - production rate of background processes
 - ➡ resources available (aka 💷 💷)

TDAQ architecture

DAQ servers handle data readout, event building and processing

Digitization - Tracker

- Outer part of the panel houses the FEE and Digitizer Readout & Assembler Controller (DRAC)
- High hit rate sustainability: 15 kHz/cm²

Digitization - Calorimeter

- Crates on the out outer part of the calorimeter house the Digitizer Readout & Assembler Controller (DIRAC)
- Pulses are digitized with 12 bit flash ADC @ 200 MHz

 digitized pulse from background particles

TDAQ architecture

DAQ servers handle data readout, event building and processing

Mu2e DAQ room

TDAQ architecture

DAQ servers handle data readout, event building and processing

Data rates

• Data rates limited by the amount of disk space available:

⇒ ~7 PB/year

Processing time

- The Trigger decision is made on the DAQ servers
- Performance of the DAQ servers determines the average time/event available to make the Trigger decision:

$$\left(\frac{1}{200\text{K}}\frac{\text{s}}{\text{Events}}\right) \cdot (40 \text{ nodes}) \cdot \left(20\frac{\text{art Threads}}{\text{Nodes}}\right) = 4 \frac{\text{ms}}{\frac{\text{Events}}{\text{art Threads}}}$$

• That's just a benchmark!

- CPU performance are affected by various factors, like:
 - number of cores used
 - memory usage

Trigger Panel

- Design of the Trigger Strategy is fundamental for the success!
- In general, a Trigger panel is designed to accomodate for:

✓ physics processes of interest

✓ calibrations

- ✓ **zero bias**: random trigger on accelerator clock
- ✓ **lower bias:** triggers accepted with pre-scale

Physics processes

- Need to take into account ALL the physical processes we might need in the data analyses:
 - ✓ μ + Al → e- + Al conversion ✓ μ - + Al → e+ Na conversion
 - \checkmark e+/e- from Radiative π-Capture
 - ✓ e+/e- from Radiative μ -Capture
 - ✓ e- from μ -Decay In Orbit
 - ✓ protons from μ Capture
- Today, I discuss the Trigger for $\mu^- \rightarrow e^-$

backgrounds

µ-capture

normalization

µ-to e-Trigger plan

- Want to maximize as much as we can the Trigger efficiency
- Multiple Trigger paths ensure:
 - ➡ maximize the global Trigger efficiency
 - redundancy of the system
 - ➡ handle to measure/monitor relative trigger efficiency
- We designed 3 different Trigger paths for the µ-to-e- search:
 - ✓ "pure" track Trigger
 - ✓ "Calo seeded" track Trigger
 - ✓ "pure" Calorimeter Trigger

"pure" Track Trigger

- Applies the preliminary part of the offline track reconstruction that uses only info from the Tracker
- Reconstruction is staged in different layers
- Trigger decision is made at each stage

⇒no Kalman filter

• $\varepsilon_{trigger} \sim 100\%$, Rejection ~ 200

 \Rightarrow z- ϕ line fit

Calo-seeded Track Trigger

- Applies the preliminary part of the offline calorimeter seeded track reconstruction
- Reconstruction is staged in different layers
- Trigger decision is made at each stage

- groups of straw-hits correlated in time and space with the calorimeter clusters
- pattern recognition:
 - ➡3D hit search
 - ➡calo-cluster used as "constrain"

- global 3D track fit:
- ⇒no drift time used
- ⇒no Kalman filter
- ε_{trigger} > 95% (calorimeter acceptance), Rejection > 500

Calorimeter Trigger

- Applies fast-hit reconstruction + clustering in the calorimeter
- uses a specialized **Boost-Decision-Tree** that uses calocluster info to make Trigger decision
- fast algorithm!

ε_{trigger} ~ 90% (calorimeter acceptance), Rejection ~ 300

Summary

- One of the Mu2e challenges will be the design of its Trigger
 - ✓ match the 4 ms/event requirement is not so simple
- Current Trigger algorithms use part of the full offline reco:
 - ✓ Track triggers
 - ✓ Calorimeter trigger
- Work is ongoing to improve our expected performance
 - extremely fun and instructive!

backup slides

Event rate

Globally ~200K events per second

• ON Spill event contribution:

➡43.1ms / 1695ns = 25K pulses per spill

⇒25K * 8 / 1.4s = 145K ON Spill events per second

• OFF Spill event contribution:

 \Rightarrow 1.4s - 43.1ms * 8 = 1s OFF Spill time

Spill structure

MU2e

- Helix finder provides rejection in the range [10,100]
- Track-seed reco uses helix candidates with nhits>= 10
- Track-seed provides rejection at ~ 800
- Signal efficiency > 95 % (calorimeter acceptance)

