

The Mu2e Experiment A Search for Charged Lepton Flavor Violation

Mu2e Summer Lectures: Introduction Manolis Kargiantoulakis 8/10/2018

Outline

- Context and motivation
- The Mu2e experiment
- Backgrounds
- Summary, outlook

The Mu2e Experiment

Context and motivation

- Lepton flavor in the SM
- Charged lepton flavor violation
- $\mu \rightarrow e$ conversion
- The Mu2e experiment
- Backgrounds
- Summary, outlook

08/10/2018

Standard Model

Standard Model of Elementary Particles

- The Standard Model
 A greatly successful theory
- Crowning triumph:
 Discovery of SM-like Higgs particle

Standard Model

Standard Model of Elementary Particles

- The Standard Model
 A greatly successful theory
- Crowning triumph:
 Discovery of SM-like Higgs particle
- And yet...Must be incomplete!
 - Gravity, dark matter
 - neutrino oscillations
- Not a complete theory of fundamental interactions
 - Motivated to search for physics beyond the SM
 - Address open questions

Standard Model of Elementary Particles

The SM flavor puzzle

- Why are there 3 generations of matter?
 - Rabi encapsulated the issue well..

- What defines fermion masses?
- Is mixing allowed between generations/flavors?

Standard Model of Elementary Particles

Mixing between flavors

 Quarks mix through W exchange, CKM mechanism

Standard Model of Elementary Particles

Mixing between flavors

- Quarks mix through W exchange, CKM mechanism
- Leptons weak decay

$$l^{\pm} \rightarrow W^{\pm} \nu_l$$

(all in the family)

Standard Model of Elementary Particles

Mixing between flavors

- Quarks mix through W exchange, CKM mechanism
- Leptons weak decay

$$l^{\pm} \rightarrow W^{\pm} \nu_l$$

(all in the family)

- Neutrino oscillations
 - → Lepton flavor violated!

Standard Model of Elementary Particles

Mixing between flavors

- Quarks mix through W exchange, CKM mechanism
- Leptons weak decay

$$l^{\pm} \to W^{\pm} \nu_l$$

(all in the family)

- Neutrino oscillations
 → Lepton flavor violated!
- Mixing between charged leptons: Never observed!
- Well motivated searches for violation of charged lepton flavor
 - A single observation would be evidence of New Physics

Charged Lepton Flavor Violation

Ordinary muon decay conserves lepton flavor:

Violation of charged lepton flavor "forbidden" in SM

Charged Lepton Flavor Violation

Ordinary muon decay conserves lepton flavor:

$$\mu^{-} \to e^{-} \overline{\nu}_{e} \nu_{\mu}$$

$$\downarrow^{\mu}_{e} \qquad \qquad 0 \qquad 0 \qquad 1$$

$$\downarrow^{\mu}_{e} \qquad \qquad 0 \qquad 1 \qquad -1 \qquad 0$$

- Some CLFV must occur
- But rate is vanishingly small, <10⁻⁵⁰

BR(
$$\mu \to e\gamma$$
) = $\frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U_{\mu i}^* U_{ei} \frac{\Delta m_{1i}^2}{M_W^2} \right|^2 < 10^{-54}$

Any CLFV observation would be evidence that rate is enhanced by new physics

- Intensity Frontier search, complementarity and synergy with LHC
- Connections with: flavor in SM, neutrino mass, lepton flavor universality, g-2, ...

$\mu \rightarrow e$ conversion: The Mu2e search

Coherent conversion $\mu \rightarrow e$ in the field of a nucleus

$$\mu^{-} + A(Z,N) \rightarrow e^{-} + A(Z,N)$$

Clean experimental signature

• monochromatic e^- – for Al:

$$E_e(Al) = M_{\mu} - E_b - E_{recoil}^{Al} \approx 104.97 \text{ MeV}$$

$R_{\mu e} = \frac{\mu + A(Z,N) \to e + A(Z,N)}{\mu^{-} + A(Z,N) \to \nu_{\mu} + A(Z-1,N)}$

Current limit: $R_{\mu e} < 7 \times 10^{-13}$ [SINDRUM II]

Conversion process

Ordinary muon capture

$\mu \rightarrow e$ conversion: The Mu2e search

Coherent conversion $\mu \rightarrow e$ in the field of a nucleus

$$\mu^- + A(Z,N) \rightarrow e^- + A(Z,N)$$

Clean experimental signature

• monochromatic e^- – for Al:

$$E_e(Al) = M_u - E_b - E_{recoil}^{Al} \approx 104.97 \text{ MeV}$$

$$R_{\mu e} = \frac{\mu + A(Z,N) \to e + A(Z,N)}{\mu^{-} + A(Z,N) \to \nu_{\mu} + A(Z-1,N)}$$

Conversion process

Ordinary muon capture

Current limit: $R_{\mu e} < 7 \times 10^{-13}$ [SINDRUM II]

The Mu2e experiment will probe $R_{\mu e}$ at the level of ~6×10⁻¹⁷ (90% CL)

4 orders of magnitude improvement – a rare opportunity!

History of CLFV searches

Improvement in sensitivity usually driven by availability of more intense muon beams

History of CLFV searches

- ullet Dramatic improvement in next generation experiments, especially $\mu {
 m N}
 ightarrow e {
 m N}$
- Exploring unconstrained phase space favored by many New Physics models

$\mu \rightarrow e$ conversion processes

$$\mathcal{L}_{\text{CLFV}} = \underbrace{\frac{m_{\mu}}{(1+\kappa)\Lambda^{2}} \bar{\mu}_{R} \sigma_{\mu\nu} e_{L} F^{\mu\nu} + \frac{\kappa}{(1+\kappa)\Lambda^{2}} \bar{\mu}_{L} \gamma_{\mu} e_{L} (\bar{u}_{L} \gamma^{\mu} u_{L} + \bar{d}_{L} \gamma^{\mu} d_{L})}_{\text{"Loop"}}$$
"Loop"

"Contact"

↑: effective mass parameter

K: relative strength of loop- and contact-dominated terms

Loop terms:

Also mediate $\mu \rightarrow e \gamma$

Supersymmetry

Two Higgs doublets

New heavy bosons/ anomalous couplings

Contact terms

 Only mediate $\mu N \rightarrow eN$

M. Kargiantoulakis

Physics Reach

$$\mathcal{L}_{\text{CLFV}} = \frac{m_{\mu}}{(1+\kappa) \Lambda^2} \bar{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \frac{\kappa}{(1+\kappa) \Lambda^2} \bar{\mu}_L \gamma_{\mu} e_L (\bar{u}_L \gamma^{\mu} u_L + \bar{d}_L \gamma^{\mu} d_L)$$

∧: effective mass parameter

K: relative strength of loop- and contact-dominated terms

Mu2e improves sensitivity in all New Physics scenarios

Effective mass scale reach up to 10⁴ TeV, well beyond the direct reach of current or future colliders

- Context and motivation
- The Mu2e experiment
 - Apparatus and concept
 - Solenoidal transport
 - Detectors
- Backgrounds
- Summary, outlook

The Fermilab Mu2e experiment

Mu2e will be performed in Fermilab, in the new Muon Campus.

The Mu2e Collaboration >200 scientists, 37 institutions

08/10/2018

Mu2e Experimental Apparatus

Production Solenoid

Transport Solenoid

Detector Solenoid

~25 m

- Three functional solenoid units
- Graded fields 4.5 T → 1 T
 - Increase collection efficiency, sweep particles from production to detector

Mu2e Experimental Apparatus: Production

- 8 GeV pulsed proton beam at 8 kW, 1.7 µs between pulses
- ~7×10¹² protons/s on tungsten production target
- Pions decay to produce secondary muon beam
- Magnetic gradient directs muons to Transport Solenoid

Mu2e Experimental Apparatus: Transport

Production Solenoid

Transport Solenoid

Detector Solenoid

 $B_z = 4.5T$ 2.5T

S-shape solenoid eliminates line-of sight backgrounds.

Curvature drift and collimators select sign and momentum of muon beam, transport to stopping target.

Mu2e Experimental Apparatus: Detector

- Muons with <p_μ>≈35 MeV/c stopped at Al target
- 10^{10} stopped μ /s, ~ 10^{18} total over 3 years
 - World's most intense muon beam!
- Detector system must identify and reconstruct a 105 MeV conversion electron, while rejecting backgrounds from conventional processes

Processes at the Stopping Target

Possibilities for stopped muon at Al atom:

1) Conversion to ~105 MeV electron

- This is the signal of CLFV
- Unfortunately not very often $R_{\mu e}$ < 7×10^{-13}

2) Muon captured in Al nucleus

- ~60% occurrence
- Process used for rate normalization

$$R_{\mu e} = \frac{\mu \ N \to e \ N}{\mu \ \text{Al}(27,13) \to \nu_{\mu} \ \text{Mg}(27,12)}$$

3) Decay in orbit (DIO)

- ~40% occurrence
- Background process

Background Process: Decay in Orbit

Michel spectrum of E_e after free muon decay, or modified in field of nucleus

Background Process: Decay in Orbit

- Nuclear modification pushes DIO spectrum near conversion electron energy
- Overlap after energy loss in material and detector resolution
- DIO electron only differs from signal through its momentum
 - → Need low mass detector with high resolution

Detector

Detector immersed in solenoid field → electrons travel in near helical path

High-rate, time-varying environment, in vacuum

Main detector element: Straw tracker: low-mass straw drift tubes, transverse to axis

- High precision momentum reconstruction of charged particles → separation from DIO
- Hole-in-center design rejects most backgrounds (Mete's talk)

Followed by Calorimeter: 2 disks of CsI scintillating crystals (Davide's talk)

• Independent measurement of energy, position, time; protection from some backgrounds

- Context and motivation
- The Mu2e experiment
- Backgrounds
 - Prompt backgrounds
 - Delayed signal window and extinction
 - Cosmic ray veto
- Summary, outlook

When a single event is evidence of New Physics, all potential backgrounds must be suppressed to an expectation of **zero**

Types of Backgrounds

- Intrinsic (muon induced)
 - Muon decay in orbit (DIO)
 - Radiative muon capture

Suppressed by spectrometer design: minimized occupancy, optimized resolution, track reconstruction

- Prompt backgrounds
 - Radiative pion capture
 - Muon decay in flight
 - Pion decay in flight
 - Beam electrons
- Slow transit through muon beamline
 - Antiprotons
- Cosmic rays

Mu2e Prompt Backgrounds

Prompt event: occurs shortly after particle reaches stopping target

Example: Radiative pion capture

Non-decayed pion reaches stopping target and is radiatively captured, then photon converts.

$$\pi^{-} N \rightarrow \gamma N$$

$$\gamma \rightarrow e^{-} e^{+}$$

Photon momentum endpoint at m_x.

The electron can have momentum in signal window, and mimic conversion event.

Pion lifetime: only ~26 ns, much shorter than muonic Al (864 ns)

Prompt backgrounds: decay quickly after proton pulse

Concept to suppress prompt backgrounds: Simply wait until their rates are lowered before initiating live window to look for signal.

Pulsed Beam and Delayed Signal Window

- Proton pulse period: 1695 ns (FNAL Delivery Ring)
 - Beam "flash" in first ~500 ns
- Pion lifetime: 26 ns prompt backgrounds decay before signal window
- Delayed signal window: 700 → 1600 ns Detector is live here
- Muonic Al lifetime: 864 ns reason for selecting Al target

Must also eliminate late-arriving protons Require beam extinction (fraction of beam between pulses): $\varepsilon < 10^{-10}$

Cosmic Ray Backgrounds

- A cosmic muon track can look like a 105 MeV/c electron (mitigated by calorimeter E/p)
- Or, the cosmic muon can decay or knock out electron from material
 → indistinguishable from conversion electron

- Expect one such event per day
- Crucial to veto cosmic rays
 - → Cosmic Ray Veto system (Yuri's talk)

Types of Backgrounds

Intrinsic (muon induced)– Muon decay in orbit (DIO)	Separated by electron momentum, low-mass detector, resolution	
 Late arriving Radiative pion capture Muon decay in flight Pion decay in flight Beam electrons 	Delayed signal window, simply wait until prompt rates are lowered. Resonant extraction + AC dipole achieve extinction $\varepsilon < 10^{-10}$	
 Slow transit through muon beamline Antiprotons 	Absorbed by thin mylar window in transport solenoid	
 Cosmic rays 	Cosmic ray veto (CRV)	

08/10/2018

3 years at 1.2×10²⁰ protons/year (8 kW beam power)

Category	Background	Expected events
Intrinsic	Muon decay in orbit	0.199 ± 0.092
	Muon capture (RMC)	$0.000^{+0.004}_{-0.000}$
Late arriving	Pion capture	$\textbf{0.023} \pm \textbf{0.006}$
	Muon decay in flight	< 0.003
	Pion decay in flight	$0.001 \pm < 0.001$
	Beam electrons	$\textbf{0.003} \pm \textbf{0.001}$
Miscellaneous	Antiproton induced	$\textbf{0.047} \pm \textbf{0.024}$
	Cosmic rays	0.082 ± 0.018
Total		$\textbf{0.36} \pm \textbf{0.10}$

Expect <0.5 background event in 3 years: Any observation will be evidence of CLFV

Signal and DIO Background

For $R_{\mu e} \approx 10^{-16}$ we expect:

~4 conversion events, no background contamination

Mu2e Building Status

Mu2e detectors and solenoids in the building stage, installation soon

Summary

The Mu2e experiment

- A search for Charge Lepton Flavor Violation
 - coherent conversion of a muon to an electron in the field of an Al nucleus
- Sensitivity increase by 4 orders of magnitude
 - World's most intense muon beam
 - Extreme suppression of backgrounds
 - any event will be sign of CLFV and New Physics
- Discovery potential over wide range of New Physics models
 - results will shape future directions in physics research
- Data expected in 2022

08/10/2018

Backup

CLFV processes

Broad global interest in CLFV searches:

Process	Current limit	Planned Next Gen Experiment
$Z ightarrow e\mu$	BR $< 7.5 \cdot 10^{-7}$	
au o eee	BR $< 2.7 \cdot 10^{-8}$	
$ au o \mu\mu\mu$	BR $< 2.1 \cdot 10^{-8}$	10 ⁻⁹ , BELLE-II
$ au o \mu$ ee	BR $< 1.5 \cdot 10^{-8}$	
$ au o\mu\eta$	BR $< 6.5 \cdot 10^{-8}$	
$ au o e\gamma$	BR $< 3.3 \cdot 10^{-8}$	
$ au o \mu \gamma$	BR $< 4.4 \cdot 10^{-8}$	
$K_L o e \mu$	BR $< 4.7 \cdot 10^{-12}$	
$K^+ o \pi^+ e \mu$	BR $< 1.3 \cdot 10^{-11}$	
$B^0 o e\mu$	BR $< 7.8 \cdot 10^{-8}$	
$B^+ o K^+e\mu$	BR $< 9.1 \cdot 10^{-8}$	
$\mu^+ o e^+ \gamma$	BR $< 4.2 \cdot 10^{-13}$	10 ⁻¹⁴ (MEG)
$\mu^+ o e^+e^-e^+$	BR $< 1.0 \cdot 10^{-12}$	10 ⁻¹⁶ (Mu3e)
μ^- A $ ightarrow$ e $^-$ A	$R_{\mu e}^{Au} < 7.0 \cdot 10^{-13}$	10 ⁻¹⁷ (Mu2e, COMET)

- Most stringent limits come from the muon sector
- The $\mu A \rightarrow e A$ process offers greatest potential sensitivity
 - Best control of backgrounds

Stopping Target

Muons stopped in thin Al target foils. Quickly cascade to 1s ground state (~1 fs), emitting X-rays at characteristic energies

Fermi radius ~20 fm Muonic Al lifetime: 864 ns

Muonic atom at rest

High-purity Ge detector monitors de-excitation X-rays from stopping target

Tracker Front-End Electronics

Electronics volume 71<r<80 cm

on every panel inside cryostat

Readout at both ends of straw, preamp and digitization

- Drift time resolution:
 2ns (100µm drift radius)
- Time difference resolution: 4cm along straw axis
- ADC for dE/dx measurement to identify highly-ionizing proton hits

Digitizer mezzanine card Preamp boards

Requirements:

- Supply HV to straws (and remote disconnect)
- B-field perturbation <1G in active detector region
- Low power <10kW within cooling capabilities
- Sustain radiation damage from target
- <12×96 dead channels in 5 yrs at 90% CL

Digitizer mezzanine card

Achieving Extinction

- Single bunch in Delivery Ring at a time - revolution period 1695 ns
- Resonant Extraction peels off proton pulses to Mu2e production target
 - extracted beam ε ≈ 2×10⁻⁵
- Resonant dipole guides out-of-time beam to collimators
 - extinction factor $\varepsilon = 5 \times 10^{-8}$

Total expected extinction:

$$\varepsilon = 1.1 \times 10^{-12}$$

43

The Mu2e Proton Beam

- Mu2e begins by using protons to produce pions
- Mu2e will repurpose much of the Tevatron anti-proton complex to instead produce muons.
- Mu2e can (and will) run simultaneously with NOvA and BNB.

Beamline Installation

Signal momentum spectrum

Smearing dominated by interactions at the target and at neutron/proton absorbers upstream of the tracker

Remnant Beam and Proton Absorbers

Detector is blind to low-momentum particles, beam flash, ...

Proton absorbers

Plastic absorbs protons from target (~0.1/muon capture, large dE/dx), protects tracker from high rates and large charge deposition.

$$\mathcal{L}_{\text{CLFV}} = \frac{m_{\mu}}{(1+\kappa)\Lambda^{2}} \bar{\mu}_{R} \sigma_{\mu\nu} e_{L} F^{\mu\nu} + \frac{\kappa}{(1+\kappa)\Lambda^{2}} \bar{\mu}_{L} \gamma_{\mu} e_{L} (\bar{u}_{L} \gamma^{\mu} u_{L} + \bar{d}_{L} \gamma^{\mu} d_{L})$$

Next generation Mu2e improves R_{ue} limit by an extra order of magnitude

- Next-generation Mu2e feasibility study (1307.1168)
- Requires FNAL intensity upgrade (PIP-II)
- Powerful measurement in

Next-next-generation Mu2e-II will be powerful even if no signal is observed in Mu2e

If a signal *is* observed in Mu2e...

Model Discrimination

We obtain model discriminating power on underlying physics mechanism by comparing CLFV rates on different stopping targets

08/10/2018