

Davide Caiulo Università di Pisa/INFN Pisa

August 10, 2018

Outline

Calorimeter principles

Scintillation & Photodetectors

The Mu2e calorimeter

Conclusions

What is a calorimeter? (1)

- A calorimeter measures the particle energy
- The measurement process is a destructive process
 →particles are no longer available
- What kind of particle can be measured?
 - em calorimeter (photon, electrons, π^0)
 - hadron calorimeter (neutrons, protons, $\pi^{+/-}$, K, jets...)
- Basic assumption : linearity
 Calorimeter signal = (Constant) x (particle energy)

What is a calorimeter? (2)

- Calorimetry is a widespread technique in particle physics:
 - instrumented targets
 - neutrino experiments
 - proton decay / cosmic ray detectors
 - shower counters
 - 4π detectors for collider experiments
- Calorimetry makes use of various detection mechanisms:
 - Scintillation
 - Cherenkov radiation
 - Ionization
- Calorimeter can be extremely fast
 - → recognize and select events in real time (*trigger*)

Calorimeter types

Two different calorimeter by construction:

- Heterogeneous calorimeter
 Layers of passive absorber
 alternate with active detector
 layers
- Homogenous calorimeter
 A single medium serves as both absorber and detector

Heterogeneous calorimeter

These calorimeters use different media:

- High density absorber
- Interleaved with active readout devices
- Most common used : sandwich structure

Advantages:

- Cost
- Transverse and longitudinal segmentation

Example:

- ATLAS ECAL
- KLOE

Disadvantages:

- Only part of shower seen
- Bad energy resolution (sampling fluctuations)

KLOE calorimeter: Lead and Scintillating fibers

Homogenous calorimeters

One block of material serves as absorber and active medium at the same time

- Scintillating crystals → scintillation
- Lead glass → Cherenkov light
- Liquid noble gasses → ionization

Advantages:

- Best energy resolution
- Good linearity

Disadvantages:

- Expensive
- Limited segmentation

Example:

- **CMS ECAL**
- **MEG ECAL**

MEG: Liquid Xenon + PMTs

CMS: PbWO₄ crystals

Electromagnetic shower

Dominant processes at the high energies (E > few MeV)

Photons: pair production

$$\sigma_{
m pair} pprox rac{7}{9} \left(4 \, lpha r_e^2 Z^2 \ln rac{183}{Z^{rac{1}{3}}}
ight)$$

$$= rac{7}{9} rac{A}{N_A X_0} \qquad {
m [X_0: radiation \ length]} {
m [in \ cm \ or \ g/cm^2]}$$

Absorption coefficient:

$$\mu = n\sigma = \rho \frac{N_A}{A} \cdot \sigma_{\text{pair}} = \frac{7}{9} \frac{\rho}{X_0}$$

X₀: radiation length [g/cm³]

$$X_0 = \frac{A}{4\alpha N_A Z^2 r_e^2 \ln \frac{183}{Z^{1/3}}}$$

Electrons: Bremsstrahlung

$$\frac{dE}{dx} = 4\alpha N_A \, \frac{Z^2}{A} r_e^2 \cdot E \, \ln \frac{183}{Z^{\frac{1}{3}}} = \frac{E}{X_0}$$

$$\rightarrow E = E_0 e^{-x/X_0}$$

After passage of one X₀ electron has only (1/e)th of its primary energy ...

[i.e. 37%]

Analytic shower model

An alternating sequence of interactions creates a cascade

Simplified shower model [Heitler]:

- E > E_c: shower development governed by X₀
 - e⁻ loses energy 63% of energy in 1 X₀ via Bremsstrahlung
 - γ pair production with mean free path 9/7 X_0
- N. particle doubles every X₀ of material
- Energy reduced by 2 @ each iteration
- Shower stops if E < E_c
- Number of particles $N = E_0/E_c$
- Maximum @ $n_{max} = In(E_0/E_c)/In2$

$$E_c = \frac{610 \, MeV}{Z + 1.24}$$

Signal generation

- A particle deposits its full energy in the calorimeter media
- The energy is converted into a measurable signal (charge / light / sound / heat)

The most used materials are:

- Semiconductors: dE/dx or photon absorption + drift of e-h eV per e-hole pair
- Gases: dE/dx or photon absorption + charge diffusion
 20-40 MeV per e-ion pair
- Scintillators: dE/dx or photon absorption + light emission 400-1000 eV per photon

Generated charges or photons yields the measurable signals

Energy resolution

The energy resolution is parametrized as

$$\frac{\sigma(E)}{E} = \sqrt{\left(\frac{a}{\sqrt{E}}\right)^2 + \left(\frac{b}{E}\right)^2 + c^2}$$

Stochastic term a

 $E \propto N \rightarrow \sigma \propto 1/\sqrt{N}$: all statistical effects contribute (intrinsic statistical shower fluctuations, sampling fluctuations, signal quantum fluctuation)

Noise term b

Electronic noise, radio-activity, pile-up fluctuations (relevant at low energy)

Constant term c

Inhomogeneities, calibration uncertainties, radiation damage (dominant at high energy)

Outline

Calorimeter principles

Scintillation & Photodetectors

The Mu2e calorimeter

Conclusions

Scintillation process

A charged particle crossing a scintillator loses energy, exciting atoms or molecules of the material

→ photon emission (UV-visible) follows

Light emission:

- Can be instantaneous (<10⁻⁸ s) or delayed (ms to hours)
- Has one or two exponential decay time t_D (fast, fast/slow)

Scintillators: characteristics

 Light Yield (LY): number od photons produced for a given absorbed energy

- Transparency to the emitted radiation
- Spectral emission compatible with light detectors (photo sensors), where light is collected and then converted into electrons via photoelectric effect
- Linearity of response
- Time response
- Density, X₀

Types of scintillators

Organic scintillators

Complex organic molecules where UV light is emitted after excitation of molecular levels. Other molecules are then added to transfer light into visible radiation

- Fast emission time (2.5-10 ns)
- Low scintillation efficiency (< 2k photons /MeV)
- Low density (1 g/cm³)
- Can be easily machined to any shape (fibers)

Inorganic scintillators

Crystals, usually doped with impurities uniformly dispersed throughout the crystal lattice

- High scintillation efficiency (10-70 k photons /MeV)
- Slow emission time (100-600 ns)
- High density (4-7 g/cm³)

Detecting the light: photosensors

Light is guided to a photo-detector and converted into charge:

Conversion of a photon into electrons via photo-electric effect

 Amplification of the electron signal by factor 10⁵ – 10⁶ via secondary emission on dynodes or avalanche multiplication in silicon

Photo-detector requirements:

- Cover a large range of wave lengths (UV to IR)
- Good efficiencies (single photon detection possible)
- Cover large active areas

Silicon photosensors

A silicon photo-sensor is a reverse Silicon N-P junction with a photo sensitive layer where 'photo electrons' are extracted

The reverse bias helps to create a large depleted region and reduces to negligible values the 'dark current', i.e. the current seen with any signal in input

Three work regimes:

- Photodiode (G=1): all e- produced in the photosensitive layer are collected at the anode
- APD (G=50-2000), or Avalanche Photodiode, working in proportional regime
- Geiger APD (G=10⁵-10⁶) working in Geiger mode

Silicon Photomultipliers (SiPM)

The basic SiPM element (pixel) is a combination of Gaiger-

APD and quenching resistor

 A large number of pixels are electrically connected and arranged in two dimension

- Each pixel generates a pulse of the same amplitude when it detects a photon
- The output signal from multiple pixels is the superimposition of single pixel pulses

Outline

Calorimeter principles

Scintillation & Photodetectors

The Mu2e calorimeter

Conclusions

Calorimeter requirements

The electromagnetic calorimeter should provide high acceptance for reconstructing energy, time and position of

CEs for:

PID: e/μ separation

EMC seeded track finder

Standalone trigger

Requirements @ 105 MeV/c:

- $\sigma_{E}/E = O(5\%)$ for CE
- $\sigma_{T} < 500 \text{ ps}$
- σ_{X,Y} < 1 cm

- Work in vacuum
- Survive the harsh radiation environment
- Limited access

Calorimeter design

2 annular disks with 674 undoped CsI (34 x 34 x 200) mm³ square crystals/each disk

- $R_{in} = 347 \text{ mm}, R_{out} = 660 \text{ mm}$
- Each crystal is readout by two large area UV extended SiPM's (14x20 mm²)
- Analog FEE is on the SiPM and digital electronics is located in near-by electronics crates
- Radioactive source and laser system provide calibration and monitoring capability

Engineering design

Zoom of SiPM/FEE disk and holders

Calorimeter readout electronics

2 SiPM/crystal 1 FEE board/array

Decay time of the SiPM

FEE board:

- Amplification
- Shaping
- Voltage regulation

Waveform digitizer: reads 20 channels at 200 MHz (1 sample each 5 ns)

Example of front end output

Small size prototype

 $\sigma_E/_F \sim 6.5 \ @ \ 100 \ MeV$

38 / 17

Energy [GeV]

 0.0049 ± 0.00015

0.07

 0.087 ± 0.0033

Small prototype 3x3 tested @ BTF (Frascati) in April 2015, 80-120 MeV e⁻

JINST 12 (2017) P05007

 $\sigma_T \sim 110 \ ps \ @ \ 100 \ MeV$

Module 0

Large ECM prototype: 51 crystals, 102 SiPM

Mechanics and cooling system similar to the final ones!

Goals:

- Integration and assembly procedures
- Test beam, 60 120 MeV
- Work under vacuum, low temperature, irradiation test

Module 0 - Results

Energy distribution obtained summing up the charge of all calorimeter channels with an energy deposition above the noise threshold

Good agreement Data - MC

 $\sigma_T < 100 \ ps \ @ \ 100 \ MeV$

Outline

Calorimeter principles

Scintillation & Photodetectors

The Mu2e calorimeter

Conclusions

Conclusions

- A calorimeter is essential in a particle physics experiment. Its function is to measure particle energy
- The energy deposited in the calorimeter is converted in a measurable signal (charge/light/sound/heat)
- A charged particle crossing a scintillator loses energy, exciting atoms or molecules of the material and a photon emission follows. A photo-sensor converts photons in electrons and amplifies the electron signal
- Mu2e calorimeter is a crystal calorimeter with excellent energy (5%) and timing (500 ps) resolution
- Mu2e calorimeter prototypes have been tested with e⁻ beam → good time and energy resolution achieved @100 MeV

Spares

PID calorimeter-tracker - basic idea

$$\beta = \frac{p}{E} \sim 0.7 \qquad E_{kin} = E - m \sim 40 \; MeV$$

Compare the reconstructed track and calorimeter information:

- $E_{cluster}/p_{track}$ & $\Delta t = t_{track} t_{cluster}$
- Build a likelihood for $e^-e \mu^-$ using distribution on E/p and Δt

Very high efficiency (>95%) with rejection factor >200

EMC based track seeding

The speed and efficiency of tracker reconstruction is improved by selecting tracker hits compatible with the time ($|\Delta T| < 50$ ns) and azimuthal angle of calorimeter clusters \rightarrow simplification of the pattern recognition

Calorimeter-based trigger

- Acceptance > 90% of events with good tracks have a cluster E > 60 MeV
- Standalone calorimeter-based online trigger needed
 - Tracker momentum calibration (i.e. $\pi \rightarrow e \nu$)
 - Measurement of tracking efficiency
 - DAQ storage limitations → 100 times reduction of background events

Fast algorithm

Crystal Choice

	LYSQ	Bar.	CsI
Radiation Length X _o [cm]	1.14	2.03	1.86
Light Yield [% NaI(Tl)]	75	4 /36	3.6
Decay Time[ns]	40	0.9 /650	20
Photosensor	APD	R&D APD	SiPM
Wavelength [nm]	402	220 /300	310

LYSO

- Radiation hard, not hygroscopic
- Excellent LY
- Tau = 40ns
- Emits @ 420 nm,
- Easy to match to APD.
- High cost > 40\$/cc

Barium Fluoride

(BaF₂)

BASELINE-TDR

- Radiation hard, not hygroscopic
- very fast (220 nm) scintillating light
- Larger slow component at 300 nm. should be suppress for high rate capability
- Photo-sensor should have extended UV sensitivity and be "solar"-blind
- Medium cost 10\$/cc

Csl(pure)

Not too radiation

- hard
- Slightly hygroscopic
- 15-20 ns emission time
- Emits @ 320 nm.
- Comparable LY of fast component of BaF₂.
- Cheap (6-8 \$/cc)

Mu2e SiPMs design

2 arrays of 3 6x6 mm² UV-extended SiPMs for a total active area (12x18) mm²

The series configuration reduces the overall capacity and allows to generate narrower signals

