

INO-CNR Istituto Nazionale di Ottica

WP3: Muon g-2 Calibration System Update

D. Cauz, C. Ferrari MUSE Scientific Board Meeting Jul 6th 2018

Gain stability

• To measure ω_a with the required accuracy, the gain stability of the crystals SiPMs must be guaranteed and the gain eventually corrected

Short-term gain stability

- Average gain with in-fill laser **pulses** during the first 400 μs of fill
- The 3% initial drop (black dots) is due to muon splash on injection, saturating the calorimeter
- Comparison with laser light fluctuations (red squares) from LCS monitor

- For required precision: remove gain variations due to **double pulses**: a laser pulse preceded by a beam pulse within ~40 ns
- Effect estimated in the absence of beam, firing two lasers suitably • delayed (scan up to 70 ns)
- Also important to **reduce pilup** effect ($\geq 2 e^+$ hitting the same crystal at the same time)

Short-term gain stability: reminder

- Splash effect HWcorrected with Megaboxes
- Test with no beam: laser system splash simulator of 50 pulses + 1 test pulse
- Test with beam

Improvements without and with beam

Long-term gain stability

- Calorimeter SiPMs are very sensitive to temperature and bias voltage variation
- Effect time scale >> 700 μ s muon fills
- Correction done using **out-of-fill laser pulses**, a technique tested with mono-energetic electron beams in 2 test beam facilities
- Correction done every sub-run (1 sub-run ↔ 2 GB of data, ~5 seconds, 1 run ↔ 1000 GB of data)

In-fill gain function

- To get in-fill gain function
 - Correct long-term drift with out-of-fill pulses
 - Correct laser shot-by-shot
 - Correct pileup from short-term double pulse study. To be done

Before correction: 3.7% After correction: 2.8%

In-fill gain function

- To get in-fill gain function
 - Correct long-time drift with out-of-fill pulses
 - Correct laser shot-by-shot
 - Correct pileup from short-term double pulse study. To be done
- 1% fluctuations expected from laser specs
- First study shows the laser behaves much better → to be confirmed

In-fill gain function

- In-fill gain function differs from 1 for less than 3 x 10⁻⁴ after 30 μs
- Modeling function with exponential

$$y = g \left[1 - a \exp\left(\frac{t - t_0}{\tau}\right) \right]$$

 In-fill gain correction maybe unnecessary after 30 μs

SM & LM temperature studies

- System performance depends on daily temperature variation
- Such a variation affects f. i. the PIN response at the per-mil level

- To reach the required accuracy this dependence has to be accounted for
- The challenge is to correctly disentangle the effects due to the laser source, the monitor and calorimeter sensors and electronics
- Studies are on going, more info in the next future...

Laser SLOW CONTROL, reminder

Sets & monitors:

 ${\rm SM}~{\rm V}_{\rm bias}$,

LM HV,

hardware parameters (filters, mirrors),

Status of network devices,

Laser driver current and interlock status,

SM-related temperatures and storage in ODB New

Example:

sm_temp_id	sm_description	sm_id_g2sc_laser_sm_device	sm_temp_time	board_temperature	ext_temperature	csp_temperature
1	PMT LASER 1	10	2018-06-20 04:13:35.020752	45.749001	0	38.890999
2	PID1 LASER 1	11	2018-06-20 04:13:35.020752	45.285999	33.117001	38.425999
3	PID2 LASER 1	12	2018-06-20 04:13:35.020752	42.133999	33.529999	38.396999
4	PMT LASER 2	20	2018-06-20 04:13:35.020752	47.301998	0	37.458
5	PID1 LASER 2	21	2018-06-20 04:13:35.020752	50.672001	33.026001	37.737999
6	PID2 LASER 2	22	2018-06-20 04:13:35.020752	45.505001	36.911999	38.304001
7	PMT LASER 3	30	2018-06-20 04:13:35.020752	45.945	0	37.789001
8	PID1 LASER 3	31	2018-06-20 04:13:35.020752	46.209999	33.518002	37.983002
9	PID2 LASER 3	32	2018-06-20 04:13:35.020752	44.609001	33.908001	38.376999
10	PMT LASER 4	40	2018-06-20 04:13:35.020752	46.240002	0	38.001999
11	PID1 LASER 4	41	2018-06-20 04:13:35.020752	46.240002	33.528	38.153999
12	PID2 LASER 4	42	2018-06-20 04:13:35.020752	43.688999	32.938999	38.386002
13	PMT LASER 5	50	2018-06-20 04:13:35.020752	45.887001	0	38.334999
14	PID1 LASER 5	51	2018-06-20 04:13:35.020752	45.062	33.634998	38.598999
15	PID2 LASER 5	52	2018-06-20 04:13:35.020752	42.941002	33.438999	38.133999

Laser SLOW CONTROL, new

Displays last day and last week laser hut room temperatures

Laser SLOW CONTROL

NOW WE USE MIDAS ALARMS

.Program Alarm triggered when a SC Program is not running.Evaluated Alarm on a threshold condition

.destination: (to system message log, to DB system)

.Alarm Alerts: visual, audial, email, SMS

Laser SLOW CONTROL

Midas alarms are enabled in laser slow control (LSC) software

At moment the LSC sends the following warnings:

"Laser Slow Control DB CONNECTION FAILED" "Laser Slow Control LOCAL MONITOR HV: DB DATA WRITE FAILED" "Laser Slow Control NETWORK DEVICES PING: DB DATA WRITE FAILED" "Laser Slow Control SOURCE MONITOR VBIAS: DB DATA WRITE FAILED" "Laser Slow Control LASER DRIVER: DB DATA WRITE FAILED" "Laser Slow Control LASER DRIVER LOCKED" "Laser Slow Control LASER DRIVER NOT CONNECTED" "Laser Slow Control FILTER WHEELS POSITIONS: DB DATA WRITE FAILED" "Laser Slow Control FLIP MIRRORS POSITIONS: DB DATA WRITE FAILED"

Soon we will update MIDAS Program Page adding the Slow Control software restart procedure

Online Data Quality Monitor

Now DQM Laser Monitors software (ART SIDE) checks the quality of laser traces collected by DAQ

Offline Data Quality Monitor

- To make sure that the data is correctly acquired, we select offline the only fills which present both the
 - Sync pulse and the
 - End-of-fill pulse

Laser DQC						
good events bad events total events > 100 % passed	= 14 = 0 = 14 DQC					