WP4 Calorimeter Software State of art

R.Donghia, LNF-INFN

SB meeting April 4, 2018

Main tasks

- Finalizing geometry adding support for realistic disk description
- Improving timing description (big item)
- Adding support for realistic energy resolution and improving hit extraction
- Calibration
- Include Module-0 TB results in the Mu2e official software

Calorimeter geometry

Back plate

- Situation basically unchanged from last meeting. •
- Geometry contains all the important pieces, except cables. Should be easy to add • new parts or refine model if needed.
- Run dose estimate in crate / readout card underway •

Realistic geometry (1)

- Prototype code for realistic geometry under the following assumptions:
 - The crystal is described as a perfect rectangle.
 A volume defined by a set of non-parallel planes is much slower to simulate, and it is much more annoying to deal with in the reconstruction
- The crystal size is taken to be that of the smallest envelope containing the measured crystal edges
- The crystal position is taken as center of the envelope, as measured from the position survey in the disk
- In case of overlaps, the crystal size is slightly reduced to avoid overlaps

Each crystal will be placed at its surveyed position. Its shape is idealized as a rectangle whose dimensions are slightly bigger than the physical ones ($O(100 \ \mu m)$). These small approximations will have a negligible impact on physics.

Realistic geometry (2)

- Need "realistic geometry" to meet the **summer data challenge milestone**
- "Mock-up database" (i.e. text file) → allowing to define the position and size of crystals
- Need to finalize the chimes and clean up the code, but this should be ready soon for (extensive) testing

Future work

- **Realistic timing simulation (**next big issue)
 - understand a bit better the readout chain performance → efficient strategy to implement in the simulation
- Realistic energy simulation:
 - Most of the corrections are already implemented
 - database "mock-up" is needed to load the various calibration constants.
 - Need to add support for dead channels as well
 - Improve the accuracy/speed of the hit extraction procedure
- Source calibration simulation:
 - crude simulation, we need to refine it and improve the spectrum fitting procedure
- Hit compression:
 - This has been just tested works well, fixed last bugs

We're in good shape for the summer data challenge milestone, though we need to get started on finalizing the geometry description and improving the timing simulation / extraction.

Substantial improvements in the pure track and track-calo triggers:

- **Track trigger**: substantial modifications to the hit making algorithm, resulting in a processing around 3 ms.
- **Dual track calo trigger**: working for a processing time < 3 ms
- Calorimeter trigger: algorithm running ~1 ms with ~90% efficiency (consolidation phase to build full trigger sequence and try merging some sequence)

Dual Calo TRG Quick review

Select tracker hit based on the calorimeter cluster time / position and try to reconstruct the track using a semi-analytical model

CE MIXED TRACKER-CALORIMETER TRIGGER PROPOSAL (doc-db 15369) SHOWER PEAK Entries 89 (E600 0 89 **QUICK REVIEW:** 0 0 18 400 8) Select the hits 16 0 on the circle 200 14 (distance<50 mm) 12 10 8 -200 -400Doc-db 15962 -600

-400

-200

0

200

400

600 X(mm)

CE MIXED TRACKER-CALORIMETER **EFFICIENCY vs REJECTION**

preselection	CE efficiency	BKG rejection
Good tracks	90.9±0.1%	102±2
Good tracks matching a cluster with E>50 MeV	96.2±0.1% 95.3±0.1%	570±30 1030±70

TIME PERFORMANCE

TimeTracker printout (ms)	Min	Avg	Мах	
makeSH:StrawHitReco	0.4	1.3	2.3	
FilterEcalMixedTrigger	1.0	2.1	5.7	
10000 events on mu2ebuild01 Average Total: 3.5 ms				

Subtracting Straw Hit position reconstruction (1.3 ms) and ECAL waveform peaks search (1.4 ms) We should able to reach ~0.7 ms 9

Module-

Istituto Nazionale di Fisica Nucleare

- Calorimeter prototype has been assembled and tested at the LNF-BTF:
 - 51 crystals
 - 102 SiPM (58 radout)
 - Test with an electron beam with an energy rom 60 up to 120 MeV
 - No final readout digitizer!

Module-0 TB data analysis Status

At 100 MeV energy beam we achived satisfying results w.r.t. Mu2e requirements: Energy resolution ~ 5.6% Time resolution ~ 96 ps

Summary

- Calorimeter geometry description inserted in simulation is already in good agreement with the final realistic configuration. Still to do:
 - include source calibration
 - Mock-up design, final position and dimensions of crystals
- Fast and efficient Trigger method have been developed
 - 96.2% of good tracks reconstructed in ~2.1 ns. We should be able to reach 0.7 ns!
- Module-0 data analysis almost terminated.
 - Results optimization underway.
 - Next studies:
 - Data MC agreement
 - Cosmic rays

Backup

Actual software geometry (1)

- □ Need to verify dimensions and placement
- Disk case: inner ring, inner steps?, crystals, outer ring

23/04/18

□ Feet, check dimension^vand⁵^b^{lace}^men^p^{ce}^{finner} and outer ring and step ¹⁴

Actual software geometry (2) back plate

 Back/FEE plate:SiPM, PEEK plate, simplified cooling bars, FEE,copper boc, manifolds
 Cooling parts, SiPM holder... More pieaces = slower simulation
 Need to verify dimensions and placement

Crates: Crates panels, shielding, cards, cable services

All main components included in the geometry!

Crates Dose study

Dose on the calorimeter boards was updated using the latest geometry

- 9 boards/crate:
 - ➡ 8 DIRAC + mezzanine
 - 1 clock distributor

Boards dose – Disk 0

- board-Id = 0 is the closest to the crystal volume
- Mean dose is below 0.2 krad/year
- Dose along the board can vary by a large factor (>2)
- Disk-1 mean dose < 0.3 krad/year (more photons on disk-1 from simulation)

Dose shield

Study with CuW

Disk-0

- Edge effects on DIRAC boards disappeared
- Mezzanine dose doesn't show any change Disk-1
- Edge effects on DIRAC board disappeared
- Mezzanine dose doesn't show any change

Summary

Dose on the calorimeter boards was updated using the latest geometry

- 16 cm tall shield provides dose below 0.2 krad/year on disk 0: uniform
- the boards on disk 1 show regions with dose ~ 1 krad/year
- Mechanical engineer already started thinking of ways to implement 16 tall shield without interfering with board access
- Now we are focusing the attention to the crates on the second disk

Mu2e Offline is also used to simula of calorimeter prototypes

 \rightarrow Module-0 tested @ BTF facility with e- beam (60-120 MeV)

• At the end of data analysis, the developed procedure will be integrated in the official Mu2e offline

