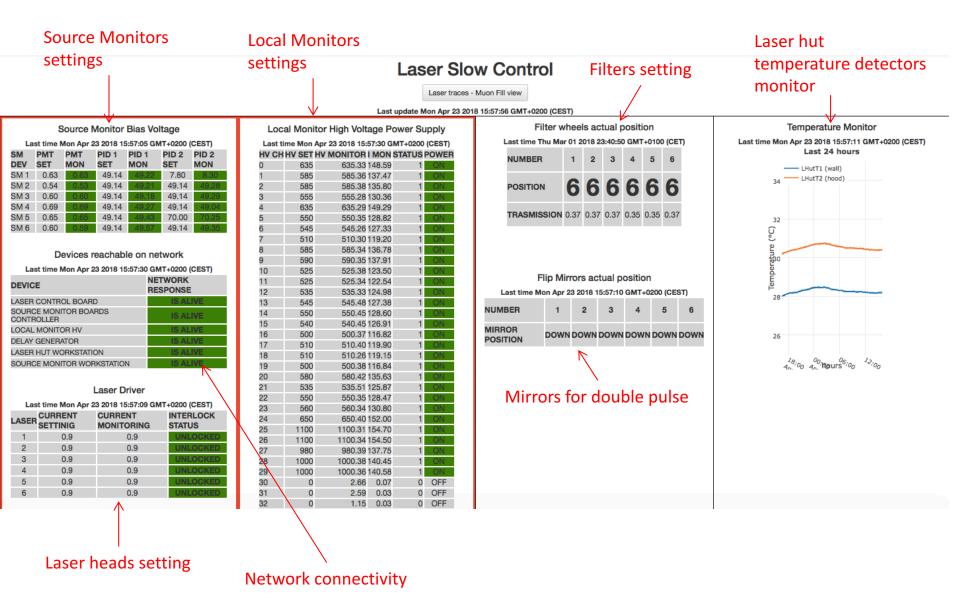


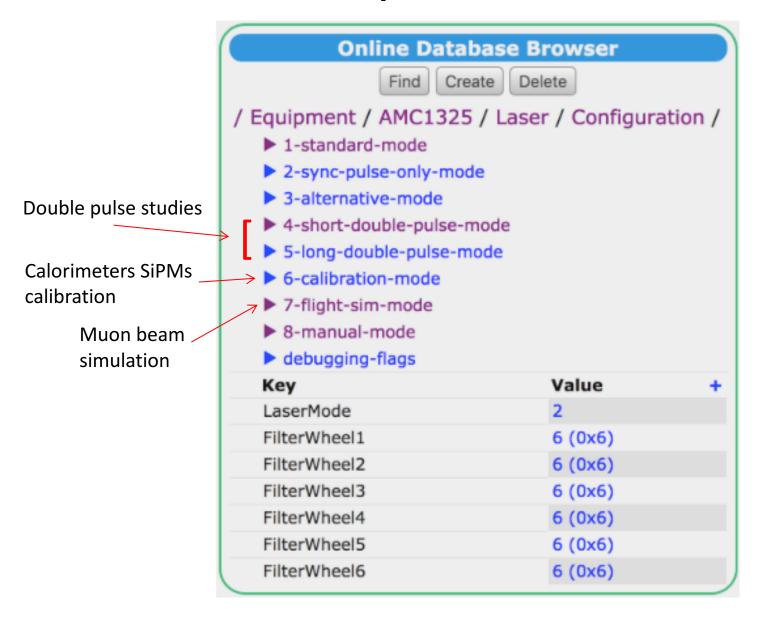
WP3: Muon g-2 Calibration System Update

C. Ferrari, D. Cauz MUSE Scientific Board Meeting Apr 24th 2017

Outline


 HW frozen, there have been no major changes in recent months

Slow control and DQM completed


Gain stability monitor: the first significant result

 The main area of work concerns the development of data analysis software

Slow control of the system

Laser operation modes

Laser system wiki pages

Introduction

This page contains stable and reliable enough information on the Muon g-2 laser calibration system.

For transient on-the-spot information please use the elog sites:

- https://muon.npl.washington.edu/elog/g2/Laser+Calibration+System/ for analysis related logs
 ask UW people for an account, otherwise use G2Muon...
- http://dbweb5.fnal.gov:8080/ECL/gm2/E/index?category_id=21 for operational & shift logs
 - must use your FNAL services password, it is part of FNAL logbook services

Information

- · how to edit and contribute
- General instruction for New Users

Software

- Offline
- · Online and ODB
- Calibration
- · Database and Slow Control

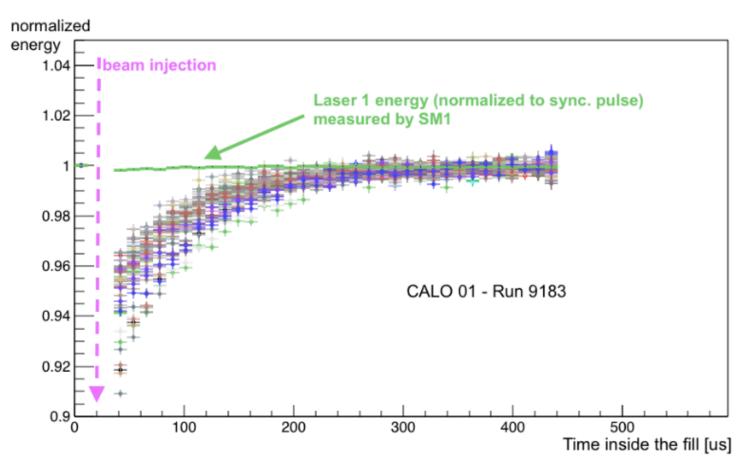
Hardware

- Hardware maps
- High Voltage System (Local Monitor and Source Monitor)
- Laser related hardware (laser control i.e. Sepia II, ...)

Procedures and Plots

- Laser System for Shifters
- · Procedure for Double Pulse
- Procedure for Filter Wheel Calibration
- Procedure for Flight Simulator
- Laser performance plots

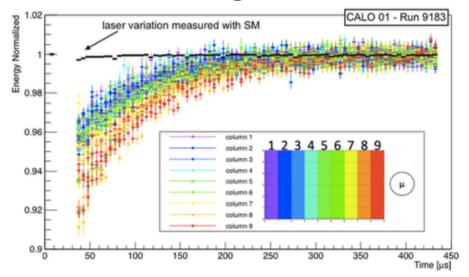
https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/Laser

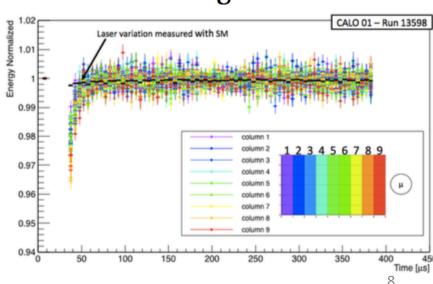

Laser system importance

E821	E989 Improvement Plans	Goal	
[ppb]		[ppb]	<u>Laser System Role</u> :
120	Better laser calibration		
	low-energy threshold	20	Key element
80	Low-energy samples recorded		
	calorimeter segmentation	40	Helps (timing)
90	Better collimation in ring	20	Helps (timing)
70	Higher n value (frequency)		
	Better match of beamline to ring	< 30	+
50	Improved tracker		Beam related
	Precise storage ring simulations	30	effects
180	Quadrature sum	70	
	[ppb] 120 80 90 70 50	120 Better laser calibration low-energy threshold 80 Low-energy samples recorded calorimeter segmentation 90 Better collimation in ring 70 Higher n value (frequency) Better match of beamline to ring 50 Improved tracker Precise storage ring simulations	[ppb] 120 Better laser calibration low-energy threshold 20 80 Low-energy samples recorded calorimeter segmentation 40 90 Better collimation in ring 20 70 Higher n value (frequency) Better match of beamline to ring < 30 50 Improved tracker Precise storage ring simulations 30

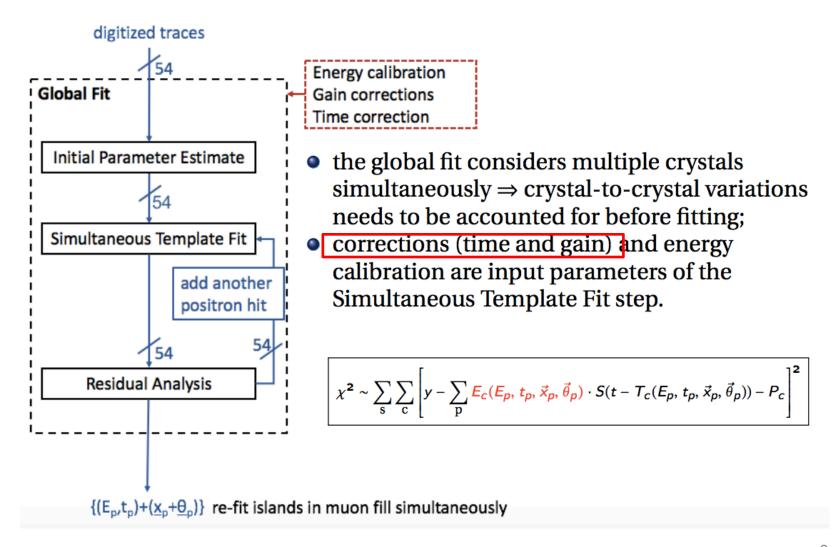
• The Laser is the key element in reducing the *overall* (including effects on B, not listed here) largest systematic error and it contributes to the reduction of 2^{nd} and 3^{rd} largest effects on ω_a

Gain stability over a fill


- Jan 2018: first measurement of the gain sag due to beam
- Done by pulsing the laser during muon fills
- Measured an effect much larger than anticipated: ~8% vs. <1%


Gain stability over a fill

- Two main effects:
 - Splash at beam injection causing a bigger drop in the calorimeters near injection site
 - Power supply recovery over the fill
- Three laser studies to characterize them
 - Flight simulator
 - Flight simulator with splash
 - Long-time double pulse with splash
- A HW fix was devised and mounted on the calorimeter power supplies: MegaBoxes
- The laser studies were extended to the case of beam present, to check the effectiveness of the MegaBoxes: MegaBoxes do mitigate the gain sag due to the splash


Sans Megaboxes:

With Megaboxes:

Gain corrections in reconstruction

Laser system update summary

- In operation and stable since April 2017
- No laser failure until now
- Uptime almost 100% since commissioning run (few drawbacks with the interlock system or trigger misalignment)
- Very important for debugging and event reconstruction
- Minor HW upgrades foreseen during next shutdown:
 - LM extended to 48 PMTs
 - Upgrade of Naples electronics
 - Implementation of asynchronous trigger for Am signals
 - Assessment of the actual delays between the sync pulses sent to the calorimeters
- Pull gain corrections to get requested accuracy