

Scintillating Crystals

S. Giovannella (INFN-LNF)

MUSE Outreach Program University of Rome "Tor Vergata" – 15 May 2017

Outline

- **X** Scintillator properties
- **X** Scintillators in High Energy Physics
- X Crystal calorimeters
- X Crystals @ Mu2e
- **X** Test of pre-production crystals

Scintillators

Basic principle: a charged particle crossing a scintillator loses energy, exciting atoms or molecules of the material

➡ photon emission (UV-visible) follows

> has an exponential decay time τ_D

Two components (fast and slow) can be simultaneously present

Scintillators: characteristics

Relevant characteristics for particle detection:

- X Light Yield (LY) number of photons produced for a given absorbed energy
- **X** Transparency to the emitted radiation
- X Spectral emission compatible with light detectors (photosensors), where light is collected and then converted into electrons via photoelectric effect
- X Linearity
- **X** Time response

Organic scintillators

- X Complex organic molecules (typically soluted in plastics materials) where UV light is emitted after excitation of molecular levels. Other molecules (wave length shifters) are then added to transfer light into visible radiation
 - Fast emission time (2.5–10 ns)
 - Low scintillation efficiency (< 2 k photons / MeV)</p>
 - Low density (1 g/cm³)
 - Can be easily machined to any shape

- X Crystals (alkali, alkaline earth and rare earth), usually doped with impurities uniformly dispersed throughout the crystal lattice
 - High scintillation efficiency (10-70 k photons / MeV)
 - Slow emission time (100–600 ns)
 - High density (4–7 g/cm³)

Scintillators in High Energy Physics

Scintillators in HEP used to build **calorimeters** rightarrow **measure particle energy**

- > Which particles? Stable charged and neutral particles with sufficient long lifetime ($c\tau$ >500 µm): *e*, µ, π, K, p, n, γ
- How? Total absorption (destructive process)

Convert energy E of incident particles to a measurable signal S:

S ∝ E

Why calorimeters?

- Neutral particle detection
- Performance improves with energy

Crystal calorimeters

- **X** Homogeneous: same absorber/active material
- X Electromagnetic Calorimeter (EMC): detection of e.m. showers

Among different types of calorimeters those with scintillating crystals are the most precise in energy measurements

- Excellent energy resolution (over a wide range)
- High detection efficiency for low energy electrons and photons
- Structural compactness:
 - simple building blocks allowing easy mechanical assembly
 - hermetic coverage
 - fine transverse granularity
- Tower structure facilitates event reconstruction
 - straightforward cluster algorithms for energy and position
 - electron/photon identification

EMC: energy resolution

Precision of the energy measurement (resolution, σ_E/E) in general limited by fluctuations in the shower process

Energy resolution is parametrized as:

$$\frac{\sigma_E}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

- - ✓ Shower fluctuations
 - ✓ Photoelectron statistics
- \blacktriangleright Noise term b ——— Relevant at low E
 - ✓ Electronic noise
- $\succ \text{ Constant term } c \longrightarrow \text{ Dominates at high E}$
 - ✓ Calibration, leakage

History of inorganic scintillators

Discovery and development of new scintillators driven by basic R&D in physics

HEP has played a major role in developing new scintillators at an industrial scale and affordable costs (CsI, BGO, PbWO)

Crystals for HEP

Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	LYSO(Ce)	PWO
Density (g/cm ³)	3.67	4.51	4.51	4.89	7.13	7.40	8.3
Melting Point (°C)	651	621	621	1280	1050	2050	1123
Radiation Length (cm)	2.59	1.86	1.86	2.03	1.12	1.14	0.89
Molière Radius (cm)	4.13	3.57	3.57	3.10	2.23	2.07	2.00
Interaction Length (cm)	42.9	39.3	39.3	30.7	22.8	20.9	20.7
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	1.82	2.20
Hygroscopicity	Yes	Slight	Slight	No	No	No	No
Luminescence ^b (nm) (at peak)	410	550	420 310	300 220	480	402	425 420
Decay Time ^b (ns)	245	1220	30 6	650 0.9	300	40	30 10
Light Yield ^{b,c} (%)	100	165	3.6 1.1	36 4.1	21	85	0.3 0.1
d(LY)/dT ʰ (%/ °C)	-0.2	0.4	-1.4	-1.9 0.1	-0.9	-0.2	-2.5

Broad variety of scintillator parameters: relative importance depends on the application

Typical LY of Nal ~ 40000 γ/MeV

Emission spectra

Photosensors

Coupling to Quantum Efficiency of photosensors is essential

Mu2e: crystal choice

Requirements:

- ✓ $\sigma_{\rm E}$ /E = 5% @ E_e=100 MeV
- ✓ $\sigma_{\rm T}$ < 500 ps @ E_e=100 MeV
- ✓ σ_{X,Y} ≤ 1 cm
- ✓ High acceptance for Conversion Electrons
- ✓ B = 1T + vacuum (10⁻⁴ Torr) operations
- Radiation hard: 20 krad γ's, 2×10¹¹ n/cm² per year

Crystal EMC

3 different R&D developed:

a. LYSO + APD

- b. BaF₂ + SL APD solar blind
- c. Pure CsI + SiPM UV-extended

- ➢ 674+674 crystals (34×34×200) mm³ [10 X₀]
- 2 UV-ext SiPMs for each crystal
 2×3 arrays of (6×6) mm² cells

Energy resolution @ low energies

$$\frac{\sigma_E}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

b term, depending mostly on electronics, can be reduced to be negligible also at 100 MeV-1 GeV

For very bright crystals, LY can be extremely high

ex: LYSO = 2000 p.e./MeV II 0.05% stochastic term resolution expected @ 1 GeV

- > In general, other fluctuations (intrinsic contributions) take over
 - ✓ In Mu2e, the most relevant one is the non-uniformity along the z-axis (LRU)

Other examples are non-linearity in response

Mu2e pre-production crystals

72 pre-production crystals received from three different vendors

Scintillation properties measured to see if crystals meet requirements:

- 1. Light Output (Np.e./MeV)
- 2. Response uniformity
- 3. Fast decay time component

Amcrys C0013	S-G C0045	SIC C0037					
Amcrys C0015	S-G C0046	SIC C0038					
Amcrys C0016	S-G C0048	SIC C0039					
Amcrys C0019	S-G C0049	SIC C0040					
Amcrys C0023	S-G C0051	SIC C0041					
Amcrys C0025	S-G C0057	SIC C0042					
Amcrys C0026	S-G C0058	SIC C0043					
Amcrys C0027	S-G C0060	SIC C0068					
Amcrys C0030	S-G C0062	SIC C0070					
Amcrys C0032	S-G C0063	SIC C0071					
Amcrys C0034	S-G C0065	SIC C0072					
Amcrys C0036	S-G C0066	SIC C0073					

Mu2e crystal test station

Mu2e crystal test station

Charge distributions of 511 keV g's

Light Yield evaluation

X From the charge distributions number of photoelectrons can be extracted:

$$N_{p.e.}/MeV = \frac{Q}{Q_e \times G_{PMT} \times E_{\gamma}} = \frac{\mu_Q}{1.6 \cdot 10^{-19} \times 3.8 \cdot 10^6 \times 0.511 \text{ MeV}}$$

X Crystal wrapping enhances light output

S.Giovannella – Scintillating Crystals – 15

Mu2e requirement: Light Output > 100 N_{p.e.}/MeV

Longitudinal Response Uniformity

- From the dependence of the LY as a function of the source position along the crystal axis, an evaluation of the Longitudinal Response Uniformity (LRU) can be extracted
- Typically, this is done by performing a linear fit to the observed response or by evaluating the RMS of all points

Fast component extraction

Plot Q_{INT}/Q_{TOT} vs DT=T-T_{mean}, with 20 ns bin width, where:

- \succ T_{mean} is the time corresponding to the peak of the pulse height
- \triangleright Q_{INT} is the charge integrated from the start of the signal (DT = -30 ns)
- \succ Q_{TOT} is the total integrated charge (-30÷900 ns)

Fit with: $P_0(1 - exp(-x/P_1)) + P_2(1 - exp(-x/P_3))$

Measurement of scintillation properties for pure CsI crystals

Distance from PMT [cm]