Track reconstruction software and performance studies of the Fermilab Muon g-2 straw tracking detectors

Tom Stuttard On behalf of the Muon g-2 Collaboration

- Particles with spin have intrinsic magnetic moment characterised by g-factor (~2 for spin $\frac{1}{2}$)
- Contribution from above tree level diagrams \rightarrow g-2 (anomalous magnetic moment)
- Lepton g-2 measurements are precision tests of SM (small QCD contribution)

• At-Ethane filled straws at stereo angles

- Measure µ g-2 by observing spin precession in storage ring B field via decay e⁺ E modulation
- BNL 540 ppb measurement of muon g-2 found 3.6 σ discrepancy w.r.t. SM \rightarrow new physics?
- Seek to confirm/reject with 140 ppb storage ring measurement at Fermilab

Test Beam At Fermilab

- Test beam for tracker module June 2015

- Charged particles ionise gas, drifting charge is collected by sense wire and triggers electronics
- Measure stored µ profile, corrections due to E field and calorimeter pile-up

• Non-zero EDM \rightarrow pitch angle oscillations

Track Reconstruction

- Hits in straws grouped in time and clustered spatially
- t_o finding algorithms and r-t calibration to determine charge drift distances from hit times
- Drift distance in each straw specifies cylindrical isochrone
- Combine with straw stereo angles to fit height and reconstruct track point in each module
- Join track points to make track candidates
- Fit track, rejecting points a required
- GEANE and Kalman filter fitters implemented

Tracker Acceptance

Geant4 simulation of storage ring used to evaluate tracker acceptance of decay e⁺

• Detector installation begins November 2016

• First beam April 2017 \rightarrow BNL statistics within a year of data taking