

Muse meeting Plans for irradiation tests @ HZDR

R. Donghia, M. Cordelli, S. Giovannella, S. Miscetti, **I. Sarra**

Talk Layout

Evaluate the MPPC behavior after 3 years of run:

- 1) New neutron test at FNG;
- 2) Innovative annealing procedure
 - \rightarrow still under investigation

3) Response / Resolution and Leakage current vs temperature;

4) CsI+MPPC test with CR vs Vbias to study the dependence of the PDE from Vbias;

photosensors

SPL and Thin Film MPPC

 We have tested the TSV MPPC (12x12 mm²) from Hamamatsu with SP and Thin Film protection layer. Both are ok coupled with pure CsI:

 \rightarrow ~ 30 (20)p.e/MeV with (without) optical grease and crystals wrapped with Tyvek

- \rightarrow Time resolution < 150 ps @ 100 MeV with 45 degrees e⁻ impact angle
- → E.N.E ~ 100 keV

see docDB 5701-v6 and others

□ Irradiation done @ FNG → Measurement of response and leakage current .. Mu2e

SiPMs tested

	V op (V)	Total flux (n/ cm ²⁾	Total flux (n_1MeV/cm ²)
SPL 4 SiPM	53.9	2.2 x 10 ¹¹	4 x 10 ¹¹
Micro Film SiPM	53.95	2.2 x 10 ¹¹	4 x 10 ¹¹
FBK SiPM	32.5	2.2 x 10 ¹¹	4 x 10 ¹¹

SPL – Micro Film

FBK

1 SiPM of 6x6 mm²

Mu2e

Irradiation plan

Day 1 Day 2 Tot neutrons from 1.36 x 10¹⁴ 1.3 x 10¹⁴ source Average flux (n/s) 1.09 x 10¹⁰ 1.16 x 10¹⁰ Tot neutrons (14 MeV) 2.2 x 10¹¹ n/cm² 2.2 x 10¹¹ n/cm² on SIPM <u>×1</u>0⁹ <u>×1</u>0⁹ Integrated flux [n/cm^2] 220 Day 2 Day 1 220 200 Total dose ~ $2.2 \times 10^{11} \text{ n/cm}^2$ Total dose ~ $2.2 \times 10^{11} \text{ n/cm}^2$ 180 In about 3 hours In about 4 hours 160 160 140 11111 120 100 80 80 60 60 40 40 20 20E 0 0 2000 12000 4000 6000 8000 10000 1400 4000 6000 12000 8000 10000 2000 Time [s] Time [s] Mu₂e

Day 1 – SPL 4 response (1)

18 Jan 2016

Day 1 – SPL 4 response (2)

The current increased from 100 uA up to ~ 2.3 mA

Day 2 – Micro Film Response

Day 2 – Micro Film and FBK responses

Reported current for FBK SiPM has been corrected by a factor of 4, due to the different active area.

The current increased from

- 16 uA up to 2.1 mA (Micro Film)
- 86/4 uA up to 19/4 ~5 mA (FBK)

Overview

Operating at Vop, not cooling the sensor after $2.2x1.8 \sim 4 \text{ n/cm}^2$ [1 MeV eq.] (equivalent at more than 6 years of run \rightarrow more than the safety value)

- ~ 2 mA *16 = 32 mA
- a factor 2 given by the natural annealing
- ~15 mA per device at 25 degrees

a factor smaller than 3 on the leakage current value for the rest of calorimeter

Goal is to keep the I dark below 2 mA in order not to dissipate more than 100 mW on SiPM and keep the Bias Supply with a limit at 4 mA.

Annealing Induced

Annealing Induced

We have kept the 2 MPPCs and the FBK at 10 Volt over the Operational Voltage for ~ 30 seconds

 \rightarrow A huge current has been allowed to flow on the devices;

 \rightarrow A huge increase of the temperature has been measured on the devices: power dissipated on the quenching resistors

Leakage Current Variations (meausure done in cleaning room):

	Before Annealing	After Annealing	
	I (mA)	I (uA)	
Micro film	1,72	134,2	
SPL 4	2,07	220	
FBK	15,6	450	
Microfilm (irradiated in July)	0,8	210	

Annealing Induced – FBK measures

Annealing Induced -> Response Recovery

Also a huge recovery on the response at a blue laser has been observed

Mu2e

Measurements of MPPC vs Temperature

- We have measured the MPPC in a cryostat in a ~10⁻⁵ torr vacuum
- We could change the temperature using a Micro Peltier controlled system

-) The response to a blue led has been measured
- 2) The leakage current has been measured using a Keithley Pico ammeter
- We have tested two MPPC from MEG: one standard and one irradiated (1.5x10¹¹ n/cm² @ 1MeV eq.~ 3 years of run in the hottest regions)

Operational Voltage vs Temperature

The operational voltage changes with temperature:

- We have re-equalized the operational Voltage keeping constant the led peak value;
- The data are related to a single cell (6x6 mm²).

Leakage Current / Response vs Temperature

- We have measured the leakage current of the MPPCs changing the temperature;
- We have measured the response of the MPPCs to the blue led changing the temperature;
- The data are related to a single cell (6x6 mm²).

Leakage Current vs Temperature vs Vbias

- We have measured the leakage current of the MPPCs changing the temperature and three different set of Vbias: Vop, Vop-0.5, Vop-1 Volt
- The data are related to a single cell (6x6 mm²).

Summarizing

Irradiated MPPC

✓ The leakage current decreases of a factor 5 from 20 to 0 °C

✓ The leakage current decreases of a factor ~ 5 (~ 2)
 from Vop to Vop-1 V (Vop -0.5V)

Considering the MPPC current of ~15 mA per device in the hottest region, operating at 0 °C and Vop-0.5 V, we expect: a leakage current of ~1.5 mA after more than 6 years of run (without Induced Annealing)

Test of CsI + MPPC with CR

In order to evaluate the lost in the PDE decreasing the Vbias, we have performed cosmic rays test with three different operational voltages Vop, Vop-0.5 and Vop-1 V

Analysis thecnique

- Fit function -> pol4
- Fit range: (0.1 85)% of the max amplitude
- Constant fraction method

Vop

❖ Finger sigma(ΔT_fingers) = 180 ps
 ❖ Final resolution for 1 MIP (~20 MeV) → ~ 290 ps
 with Tyvek wrapping and optically coupled with Bluesil Past-7 silicon grease

Vop – 0.5 Volt

❖ Finger sigma(ΔT_fingers) = 180 ps
 ❖ Final resolution for 1 MIP (~20 MeV) → ~ 320 ps
 with Tyvek wrapping and optically coupled with Bluesil Past-7 silicon grease

Vop – 1 Volt

❖ Finger sigma(ΔT_fingers) = 180 ps
 ❖ Final resolution for 1 MIP (~20 MeV) → ~ 360 ps
 with Tyvek wrapping and optically coupled with Bluesil Past-7 silicon grease

Summarizing

The PDE decreases of:

- -20 % decreasing the operational voltage at Vop 0.5 V
- -35 % decreasing the operational voltage at Vop 1 V

- ✓ Operating at Vop-0.5 V and 0 °C of temperature, we expect a total leakage current per MPPC of about 1.5 mA and a loss of PDE of a about 20% after more than 6 years of run (in the inner ring of the first disk);
- For the rest of the calorimeter a factor three safety on the leakage current and running conditions is expected.