Irradiation tests for crystals

S. Giovannella for the INFN-LNF group

MUSE Meeting: irradiation test @ HZDR LNF – 18 January 2016

FNG: the ENEA neutron irradiation facility

FNG uses a deuteron beam accelerated up to 300 keV impinging on a tritiated target to produce a nearly isotropic 14 MeV neutron output via the $T(d,n)\alpha$ fusion reaction.

14 MeV neutron on 4π solid angle

- > Max Neutron flux = 0.5×10^{11} n/s close to target
- > Radius dependence $\rightarrow 1/R^2$
- Neutron intensity selected moving the crystal position in the test area

Neutron irradiation test: crystals

4 crystals ($3 \times 3 \times 20$) cm³ tested:

1 CsI from SICCAS (China) 1 CsI from ISMA (Russia)

1 CsI from Opto Materials (Italy) 1 BaF₂ from ICROM (Russia)

Irradiation scheme:

- Day 1: 1 × 10¹¹ n/cm²
- Day 2: 3 × 10¹¹ n/cm²
- Day 3: 5 × 10¹¹ n/cm²
- Day 4: 9 × 10¹¹ n/cm²

No measurements during irradation. After each day of irradiation:

- Light yield
- Fluorescence
- Transmittance with UV light

Neutron irradiation test: light yield

Neutron irradiation test: LRU

Neutron irradiation test: Csl transmittance

- UV lamp does not have a continuous spectrum
- Values above 100 are due to low radiation regions, with not stable signal
- Minima correspond to peaks of the lamp

CALLIOPE: the ENEA γ irradiation facility

Irradiation dose done in December 2014 @ ENEA-Casaccia:

- ⁶⁰Co source (1.25 MeV)
- ✓ 48 bars with cylindrical shape housed along two concentric disks
 - Current activity: 0.35×10^{15} Bq (max. allowed: 3.7×10^{15} Bq)
- ✓ A lot of space for irradiation $(7 \times 6 \times 3.9)$ m³
- ✓ From 10 to 2 Gy/h at ~ 5 m distance
- ✓ Simple access (8∰)

Test setup

Today results On CsI only

- LYSO [(1.5 × 1.5 × 13) cm³] and Csl [(3 × 3 × 18) cm³] from SICCAS tested. Same dose along longitudinal crystal axis.
- Measurement of light yield with our system based on ²²Na source. No wrapping on crystals, PM coupling in air
- Irradiation scheme:

2 days @ 2.23 Gy/h
7 days @ 4.86 Gy/h

i.e. ~ 3 × 3 years of Mu2e running in nine days

Csl: light yield measurement

- ✓ ²²Na source: two back-to-back 511 keV photon
- ✓ Source placed between the crystal and a small monitor system (MS), (3×3×15) mm³ LYSO crystal readout by a (3×3) mm² MPPC
- ✓ Events triggered by MS

Integrated charge

Csl light yield: data cleanup

Gaussian fit on CsI time distribution in the peak region

Integrated charge spectrum for events within $\mu_T \pm 3 \sigma_T$

Gaussian peak on Q to extract light yield

Csl light yield @ different doses

Large variation of LRU response also before irradiation

Minimal light yield reduction up to 20 krad

 \sim 20% light yield reduction, increasing with distance from PM, after 90 krad

Csl: fluorescence effect

Csl: light yield recovery

No relevant recovery seen one month after irradiation

Comparison between irradiated crystal (CsI(1)) and a companion CsI from SICCAS not exposed to dose (CsI(2)) shows consistent results

Csl light yield: wrapping & PM coupling

Wrapping (teflon foil): I light yield increases by 1.5 in the readout region

• large improvement in LRU ($\pm 20\%$) recovering light loss by internal reflection

Wrapping + grease:

• further increase in LY. Npe ~ 80 @ crystal center • longitudinal response uniformity $\pm 30\%$

CsI LRU: wrapping & PM coupling (I)

CsI LRU: wrapping & PM coupling (II)

LRU for irradiated and not irradiated CsI crystal and different readout Normalization: LY=50 @ crystal center

Conclusions

- FNG irradiation test:
 - > Negligible or acceptable LY deterioration after 9×10^{11} n/cm²
 - LRU uneffected, eccept for SICCAS CsI
 - > Not negligible fluorescence/activation after big irradiation dose
 - Transmittance marginally affected
- > CALLIOPE irradiation test:
 - LY reduction of 20% after 90 krad
 - After irradiation, Npe 80/MeV @ crystal center using teflon wrapping and grease
 - LRU between 20 and 50% (no wrap, no grease)
 - Not negligible fluorescence after big irradiation dose